Math, asked by warriors65, 3 months ago

#dont spam here... ​

Attachments:

Answers

Answered by BrainlyEmpire
125

GiVeN :-

The displacement of a moving particle is represented as,

\bf{\red{\longrightarrow}}\:x\:=\:4\:\sin(4t)\:+\:3\:\cos(4t)\: \\

x is in centimetre .

t is in second .

 \\

To FiNd :-

\bf{\pink{(1)}} It's motion in S.H.M .

\bf{\pink{(2)}} It's time period .

\bf{\pink{(3)}} It's maximum velocity .

\bf{\pink{(4)}} It's maximum acceleration .

 \\

SoLuTiOn :-

◍ To convert the given displacement equation in it's motion in S.H.M, we can find that equation as in the form of '\bf{x\:=\:A\:\sin\:(\omega{t}\:+\:\phi)\:}' .

\bf{\red{\longrightarrow}}\:x\:=\:4\:\sin(4t)\:+\:3\:\cos(4t)\: \\

\bf{\red{\longrightarrow}}\:\dfrac{x}{5}\:=\:\dfrac{4}{5}\:.\:\sin(4t)\:+\:\dfrac{3}{5}\:.\:\cos(4t)\: \\

Take as,

\bf{\dfrac{4}{5}\:=\:\cos{\alpha}}

And \bf{\dfrac{3}{5}\:=\:\sin{\alpha}} \\

\bf{\red{\longrightarrow}}\:\dfrac{x}{5}\:=\:\cos{\alpha}\:.\:\sin(4t)\:+\:\sin{\alpha}\:.\:\cos(4t)\: \\

\bf{\red{\longrightarrow}}\:\dfrac{x}{5}\:=\:\sin\:(4t\:+\:\alpha)\: \\

\bf{\red{\longrightarrow}}\blue{\:x\:=\:5\:\sin\:(4t\:+\:\alpha)\:} \\

➤ Comparing with the standard equation, we get

A = amplitude = 5

\bf{\omega} = 4

\bf{\phi} = \bf{\alpha} = \bf{\cos^{-1}{\Big(\dfrac{4}{5}\Big)}} = \bf{\sin^{-1}{\Big(\dfrac{3}{5}\Big)}} \\

∴ The given displacement equation is the motion of S.H.M .

___________________________

We know that,

\huge\star \bf\orange{Time\:period\:=\:\dfrac{2\:\pi}{\omega}\:} \\

\rm{\implies\:T\:=\:\dfrac{2\:\pi}{4}\:} \\

\bf{\implies\:T\:=\:\dfrac{\pi}{2}\:sec\:} \\

∴ It's time period is \bf{\dfrac{\pi}{2}\:sec\:} .

___________________________

We know that,

\huge\star \bf\orange{v_{max}\:=\:A\:\omega\:} \\

\rm{\implies\:v_{max}\:=\:5\times{4}\:} \\

\bf{\implies\:v_{max}\:=\:20\:cm.s^{-1}\:} \\

∴ It's maximum velocity is \bf{20\:cm.s^{-1}\:} .

___________________________

We know that,

\huge\star \bf\orange{a_{max}\:=\:A\:{\omega}^2\:} \\

\rm{\implies\:a_{max}\:=\:5\times{4^2}\:} \\

\bf{\implies\:a_{max}\:=\:80\:cm.s^{-2}\:} \\

∴ It's maximum acceleration is \bf{80\:cm.s^{-2}\:} .

Answered by MissLuxuRiant
1

Answer :-

To convert the given displacement equation in it's motion in S.H.M, we can find that equation as in the form of '\bf{x\:=\:A\:\sin\:(\omega{t}\:+\:\phi)\:}

\begin{gathered}\bf{\red{\longrightarrow}}\:x\:=\:4\:\sin(4t)\:+\:3\:\cos(4t)\: \\ \end{gathered}

\begin{gathered}\bf{\red{\longrightarrow}}\:\dfrac{x}{5}\:=\:\dfrac{4}{5}\:.\:\sin(4t)\:+\:\dfrac{3}{5}\:.\:\cos(4t)\: \\ \end{gathered}

Take as,

\bf{\dfrac{4}{5}\:=\:\cos{\alpha}}

And \begin{gathered}\bf{\dfrac{3}{5}\:=\:\sin{\alpha}} \\ \end{gathered}

\begin{gathered}\bf{\red{\longrightarrow}}\:\dfrac{x}{5}\:=\:\cos{\alpha}\:.\:\sin(4t)\:+\:\sin{\alpha}\:.\:\cos(4t)\: \\ \end{gathered}

\begin{gathered}\bf{\red{\longrightarrow}}\:\dfrac{x}{5}\:=\:\sin\:(4t\:+\:\alpha)\: \\ \end{gathered}

\begin{gathered}\bf{\red{\longrightarrow}}\blue{\:x\:=\:5\:\sin\:(4t\:+\:\alpha)\:} \\ \end{gathered}

➤ Comparing with the standard equation, we get

A = amplitude = 5

\bf{\omega}ω = 4

\bf{\phi}ϕ = \bf{\alpha}α = \bf{\cos^{-1}{\Big(\dfrac{4}{5}\Big)}}

 ) = \begin{gathered}\bf{\sin^{-1}{\Big(\dfrac{3}{5}\Big)}} \\ \end{gathered}

∴ The given displacement equation is the motion of S.H.M .

___________________________

We know that,

\huge\star⋆ \begin{gathered}\bf\orange{Time\:period\:=\:\dfrac{2\:\pi}{\omega}\:}

\begin{gathered}\rm{\implies\:T\:=\:\dfrac{2\:\pi}{4}\:} \\ \end{gathered}

\begin{gathered}\bf{\implies\:T\:=\:\dfrac{\pi}{2}\:sec\:} \\ \end{gathered}

∴ It's time period is \bf{\dfrac{\pi}{2}\:sec\:}

___________________________

We know that,

\huge\star⋆ \begin{gathered}\bf\orange{v_{max}\:=\:A\:\omega\:} \\ \end{gathered}

\begin{gathered}\rm{\implies\:v_{max}\:=\:5\times{4}\:} \\ \end{gathered}

\begin{gathered}\bf{\implies\:v_{max}\:=\:20\:cm.s^{-1}\:} \\ \end{gathered}

∴ It's maximum velocity is \bf{20\:cm.s^{-1}\:}20cm.

___________________________

We know that,

\huge\star \begin{gathered}\bf\orange{a_{max}\:=\:A\:{\omega}^2\:} \\ \end{gathered}

\begin{gathered}\rm{\implies\:a_{max}\:=\:5\times{4^2}\:} \\ \end{gathered}

\begin{gathered}\bf{\implies\:a_{max}\:=\:80\:cm.s^{-2}\:} \\ \end{gathered}

∴ It's maximum acceleration is \bf{80\:cm.s^{-2}\:}80cm.

Similar questions