Down solution to the gravity is depend independent on
Answers
Answered by
0
Pick something up with your hand and drop it. When you release it from your hand, its speed is zero. On the way down its speed increases. The longer it falls the faster it travels. Sounds like acceleration to me.
But acceleration is more than just increasing speed. Pick up this same object and toss it vertically into the air. On the way up its speed will decrease until it stops and reverses direction. Decreasing speed is also considered acceleration.
But acceleration is more than just changing speed. Pick up your battered object and launch it one last time. This time throw it horizontally and notice how its horizontal velocity gradually becomes more and more vertical. Since acceleration is the rate of change of velocity with time and velocity is a vector quantity, this change in direction is also considered acceleration.
In each of these examples the acceleration was the result of gravity. Your object was accelerating because gravity was pulling it down. Even the object tossed straight up is falling — and it begins falling the minute it leaves your hand. If it wasn't, it would have continued moving away from you in a straight line. This is the acceleration due to gravity.
What are the factors that affect this acceleration due to gravity? If you were to ask this of a typical person, they would most likely say "weight" by which the actually mean "mass" (more on this later). That is, heavy objects fall fast and light objects fall slow. Although this may seem true on first inspection, it doesn't answer my original question. "What are the factors that affect the acceleration due to gravity?" Mass does not affect the acceleration due to gravity in any measurable way. The two quantities are independent of one another. Light objects accelerate more slowly than heavy objects only when forces other than gravity are also at work. When this happens, an object may be falling, but it is not in free fall. Free fall occurs whenever an object is acted upon by gravity alone.
But acceleration is more than just increasing speed. Pick up this same object and toss it vertically into the air. On the way up its speed will decrease until it stops and reverses direction. Decreasing speed is also considered acceleration.
But acceleration is more than just changing speed. Pick up your battered object and launch it one last time. This time throw it horizontally and notice how its horizontal velocity gradually becomes more and more vertical. Since acceleration is the rate of change of velocity with time and velocity is a vector quantity, this change in direction is also considered acceleration.
In each of these examples the acceleration was the result of gravity. Your object was accelerating because gravity was pulling it down. Even the object tossed straight up is falling — and it begins falling the minute it leaves your hand. If it wasn't, it would have continued moving away from you in a straight line. This is the acceleration due to gravity.
What are the factors that affect this acceleration due to gravity? If you were to ask this of a typical person, they would most likely say "weight" by which the actually mean "mass" (more on this later). That is, heavy objects fall fast and light objects fall slow. Although this may seem true on first inspection, it doesn't answer my original question. "What are the factors that affect the acceleration due to gravity?" Mass does not affect the acceleration due to gravity in any measurable way. The two quantities are independent of one another. Light objects accelerate more slowly than heavy objects only when forces other than gravity are also at work. When this happens, an object may be falling, but it is not in free fall. Free fall occurs whenever an object is acted upon by gravity alone.
Similar questions