draw a circle of radius 3 cm take two point P and Q on one of its extended diameter each at a distance of 7 cm from its centre draw tangents to the circle from these two point P and Q
Answers
Answer:
1. Draw a circle of radius 3cm .
2. from point O extand the diameter each at a distance of 7cm from its center.
3. Draw perpendicular bisecter of PO and OQ.
4. Name the point M¹ and M² which bisect the line PO and OQ.
5. take M¹ and M² as center and draw circles.
6. These two circles draw four arcs on first circle.
7. Name them as A,B,C,D .
8. Join A and D to p and B and C to Q.
These are required tangents.
Answer:
Steps of Construction:
(a) Bisect PO. Let M be the mid-point of PO.
(b) Taking M as centre and MO as radius, draw a circle. Let it intersects the given circle at the points A and B.
(c) Join PA and PB. Then PA and PB are the required two tangents.
(d) Bisect QO. Let N be the mid-point of QO.(e) Taking N as centre and NO as radius, draw a circle. Let it intersects the given circle at the points C and D.
(f) Join QC and QD.
Then QC and QD are the required two tangents.
Justification:
Join OA and OB.
Then PAO is an angle in the semicircle and therefore ∠PAO = 90° .
PA ⊥ OA
Since OA is a radius of the given circle, PA has to be a tangent to the circle. Similarly, PB is also a tangent to the circle.
Again join OC and OD.
Then ∠QCO is an angle in the semicircle and therefore ∠QCO = 90° .
Since OC is a radius of the given circle, QC has to be a tangent to the circle. Similarly, QD is also a tangent to the circle.
Step-by-step explanation:
Hope this helps you ✌️