draw a circle of radius 3cm. take two points P and Q on one of its extended diameter each at a distance of 7/2 cm from its Centre. draw tangents to the circle from these two points P and Q. also write steps of construction.
Answers
Answer:
first mark me brainleast
Answer:
Steps of Construction:
(a) Bisect PO. Let M be the mid-point of PO.
(b) Taking M as centre and MO as radius, draw a circle. Let it intersects the given circle at the points A and B.
(c) Join PA and PB. Then PA and PB are the required two tangents.
(d) Bisect QO. Let N be the mid-point of QO.(e) Taking N as centre and NO as radius, draw a circle. Let it intersects the given circle at the points C and D.
(f) Join QC and QD.
Then QC and QD are the required two tangents.
Justification:
Join OA and OB.
Then PAO is an angle in the semicircle and therefore ∠PAO = 90° .
PA ⊥ OA
Since OA is a radius of the given circle, PA has to be a tangent to the circle. Similarly, PB is also a tangent to the circle.
Again join OC and OD.
Then ∠QCO is an angle in the semicircle and therefore ∠QCO = 90° .
Since OC is a radius of the given circle, QC has to be a tangent to the circle. Similarly, QD is also a tangent to the circle.
Step-by-step explanation:
Hope this helps you ✌️