Math, asked by rainaebad47, 1 year ago

Draw the graph of linear equation 3x-2y+6=0 and x+2y-6=0 on the same graph. Find tgeir common solution.
(Please answer correctly and please don't copy the answer from other sites cuz the answer in most of the sites are wrong. So, try it yourself)
Would be really grateful

Answers

Answered by ayushnishad16p6m8n9
21
draw according to given coordinate
Attachments:

rainaebad47: Thnx
Answered by munnahal786
1

Answer:

x=0 and y=3 is the solution of the system of equations 3x-2y+6=0 and x+2y-6=0 .

Explanation:

Draw the line 3x-2y+6=0 on the graph:

1. convert the equation  3x-2y+6=0 in the form of x= (2y-6)/3,

2.Now for different values of y find the values of x,

       Y                                                               X

        0                                                               -2

         1                                                               -4/3

         2                                                               -2/3

         3                                                                0

3.Now put the values on the graph.

4. Draw a line joining all the points to form the equation 3x-2y+6=0

 Draw the line x+2y-6=0 on the graph:    

1. convert the equation  x+2y-6= 0 in the form of x=6-2y

2..Now for different values of y find the values of x,

              Y                                                             X

               0                                                             6

               1                                                               4

               2                                                              2

               3                                                              0

3.Now put the values on the graph.

4.4. Draw a line joining all the points. to form the equation x+2y-6=0.

It is very evident from the graph that both the equations will intersect at x=0 and y=3 therefore x=0 and y=3 is the solution of the system of equations 3x-2y+6=0 and x+2y-6=0 .

Attachments:
Similar questions