Physics, asked by vamsikrishna6309, 11 months ago

Drive an expression for time period of satellite

Answers

Answered by Anonymous
154

Answer:

\sf T\:=\:\dfrac{Circumference\:of\:the\:orbit}{Orbital\:velocity}

⠀⠀⠀⠀⠀⠀

\sf T\:=\:\dfrac{2\pi(R_e+h)}{V_0}

⠀⠀⠀⠀⠀⠀

but, \sf v_0\:=\:\sqrt{\dfrac{GM_e}{R_e+h}}

⠀⠀⠀⠀⠀⠀

\sf T\:=\: \dfrac{2\pi(R_e+h)}{\sqrt{\dfrac{GM_e}{R_e+h}}}

⠀⠀⠀⠀⠀⠀

\sf = \dfrac{2\pi(R_e+h)\sqrt{R_e+h}}{\sqrt{GM_e}}

⠀⠀⠀⠀⠀⠀

\sf T\:=\:\dfrac{2\pi\sqrt{(R_e+h)^2\times (R_e+h)}}{\sqrt{GM_e}}

⠀⠀⠀⠀⠀⠀

\sf = \dfrac{2\pi\sqrt{(R_e+h)^3}}{\sqrt{GM_e}}

⠀⠀⠀⠀⠀⠀

but \sf gR_e^L\:=\:GM_e

⠀⠀⠀⠀⠀⠀

\sf T\:=\: \dfrac{2\pi\sqrt{(R_e+h)^3}}{\sqrt{gR_e^2}}

⠀⠀⠀⠀⠀⠀

\sf T\:=\: 2\pi\sqrt{\dfrac{(R_e+h)^3}{gR_e^2}}

⠀⠀⠀⠀⠀⠀

Hence \sf T\:=\: \pi\sqrt{\dfrac{R_e}{g}}

⠀⠀⠀⠀⠀⠀

If the satellite is very close to earth, h = 0,

\sf T\:=\: 2\pi\sqrt{\dfrac{R_e^3}{gR_e^L}}

⠀⠀⠀⠀⠀⠀

Hence \boxed{\sf{T\:=\:\pi\sqrt{\dfrac{R_e}{g}}}}

⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀

⊱⋅ ──────────── ⋅⊰

⠀⠀⠀⠀⠀⠀

\Large{\underline{\sf{\blue{Extra\:Info:}}}}

\sf{\red{Time\:period}} of a satellite is the time taken by a satellite to complete one revoultion around earth.

Similar questions