During the day when stomata are open , the transpiration pull becomes a major driving force in the movement of water in the xylem.why?
Answers
Answered by
12
Rate Me (842 ratings)
1
2
3
4
5
Transpiration - Major Plant Highlights
Root Detail– The major path for water movement into plants is from soil to roots. Water enters near the tip of a growing root, the same region where root hairs grow. The surface of the root hairs needs to be in close contact with the soil to access soil water. Water diffuses into the root, where it can take at least three different pathways to eventually reach the xylem, the conduit located at the interior of the root that carries the soil water to the leaves. View the next level of this animation to see the possible pathways that water can take across a root.
Cross section of a plant root
What path does water take to reach the leaf from the root hair? Once water has entered a root hair, it must move across the cortex and endodermis before it reaches the xylem. Water will take the path of least resistance through a root to reach the xylem.
Water can move across the root via three different pathways. One path is the apoplastic path where the water molecule stays between cells in the cell wall region, never crossing membranes or entering a cell. The other two routes, called cellular pathways, require the water molecule to actually move across a membrane. The first cellular pathway is the transmembrane path where water moves from cell to cell across membranes; it will leave one cell by traversing its membrane and will re-enter another cell by crossing its membrane. The second cellular path is the symplastic path which takes the water molecule from cell to cell using the intercellular connections called the plasmodesmata which are membrane connections between adjacent cells. Regardless of the pathway, once the water molecule has traversed the cortex, it must now cross the endodermis. The endodermis is a layer of cells with a waxy inlay or mortar called the Casparian strip that stops water movement between cells. At this point, water is forced to move through the membranes of endodermal cells, creating a sieving effect. Once in the endodermal cells, the water freely enters the xylem cells where it joins the fast moving column of water or transpiration stream, headed to the leaves.
Xylem Details– The xylem is probably the longest part of the pathway that water takes on its way to the leaves of a plant. It is also the path of least resistance, with about a billion times less resistance than cell to cell transport of water. Xylem cells are called tracheids (cells with narrower diameters) or vessels (cells with wider diameters). Their cell walls contain cellulose and lignin making them extremely rigid. Xylem cells contain no membranes and are considered dead. These cells overlap to create a series of pathways that water can take as it heads to the leaves. There is no single column of xylem cells carrying water.
1
2
3
4
5
Transpiration - Major Plant Highlights
Root Detail– The major path for water movement into plants is from soil to roots. Water enters near the tip of a growing root, the same region where root hairs grow. The surface of the root hairs needs to be in close contact with the soil to access soil water. Water diffuses into the root, where it can take at least three different pathways to eventually reach the xylem, the conduit located at the interior of the root that carries the soil water to the leaves. View the next level of this animation to see the possible pathways that water can take across a root.
Cross section of a plant root
What path does water take to reach the leaf from the root hair? Once water has entered a root hair, it must move across the cortex and endodermis before it reaches the xylem. Water will take the path of least resistance through a root to reach the xylem.
Water can move across the root via three different pathways. One path is the apoplastic path where the water molecule stays between cells in the cell wall region, never crossing membranes or entering a cell. The other two routes, called cellular pathways, require the water molecule to actually move across a membrane. The first cellular pathway is the transmembrane path where water moves from cell to cell across membranes; it will leave one cell by traversing its membrane and will re-enter another cell by crossing its membrane. The second cellular path is the symplastic path which takes the water molecule from cell to cell using the intercellular connections called the plasmodesmata which are membrane connections between adjacent cells. Regardless of the pathway, once the water molecule has traversed the cortex, it must now cross the endodermis. The endodermis is a layer of cells with a waxy inlay or mortar called the Casparian strip that stops water movement between cells. At this point, water is forced to move through the membranes of endodermal cells, creating a sieving effect. Once in the endodermal cells, the water freely enters the xylem cells where it joins the fast moving column of water or transpiration stream, headed to the leaves.
Xylem Details– The xylem is probably the longest part of the pathway that water takes on its way to the leaves of a plant. It is also the path of least resistance, with about a billion times less resistance than cell to cell transport of water. Xylem cells are called tracheids (cells with narrower diameters) or vessels (cells with wider diameters). Their cell walls contain cellulose and lignin making them extremely rigid. Xylem cells contain no membranes and are considered dead. These cells overlap to create a series of pathways that water can take as it heads to the leaves. There is no single column of xylem cells carrying water.
kashisharora7b:
its ok
Answered by
1
vers like it 1+1 and during day it's plant wish don't ask
Similar questions