Math, asked by ritikrathee111995, 11 months ago

dy/dx+(y-1)cosx=e to the power -sinx cos²x​

Answers

Answered by Sharad001
114

Question :-

 \sf \red{ \frac{dy}{dx}  + (y - 1) \cos x} =   \green{{e}^{ -  \sin x}   { \cos}^{2} xdx} \\

Answer :-

 \boxed{  \red{ \sf y {e}^{ \sin x} } =  \frac{x}{2}  + \green{  \frac{ \sin 2x}{4}  +   {e}^{ \sin x} } + c} \\  \:

Used concept :-

We have a linear differential equation .

Process to solve :-

we have a standard linear equation

 \to  \sf \large \orange{  \frac{dy}{dx} } +  \red{p \: y = q}  \\

Here P and q are the functions of "x",

Here we defined a term called " integrating factor (i.f) .

 \to \:  \sf \large \green{ \:  i.f =  {e}^{ \int p \: dx} } \\

and after that ,

we will get our solution by -

 \to \sf \large \: y \:( i.f) =  \blue{ \int \: (i.f) \: q \: dx} \\

Explanation :-

firstly separate it like given equation,

 \to \sf \large \: \frac{dy}{dx}  + y \cos x =  {e}^{ -  \sin x} \:  { \cos}^{2}  x +  \cos x \\

Now

Find integrating factor ,

 \to \sf \large i.f =  {e}^{ \int \cos x \: dx}  \\ \\   \to \large  \sf \:  \: i.f =  {e}^{ \sin x}  \\

NOW ,

we will got our solution by -

 \to \sf   \red{ y {e}^{ \sin x} } =  \blue{ \int  {e}^{ \sin x}} \green{ ( {e}^{ -  \sin x}  { \cos}^{2} x + } \cos x)dx \\  \\ \sf   \red{  \to y  \: {e}^{ \sin x}} =   \int  { \cos}^{2} x \blue{ dx +  \int {e}^{ \sin x}  \cos x \: } dx \\  \\   \to \sf \orange{ y {e}^{ \sin x}  =  \frac{1}{2} } \red{ \int(1 +  \cos2x)dx  +  \int  {e}^{t} dt} \\  \\  \to \sf   y {e}^{ \sin x}  =   \green{\frac{x}{2}  +  \frac{ \sin 2x}{4}}  +  {e}^{t}  + c \\  \\  \to  \boxed{  \red{ \sf y {e}^{ \sin x} } =  \frac{x}{2}  + \green{  \frac{ \sin 2x}{4}  +   {e}^{ \sin x} } + c} \\

Hope it will help you.

#answerwithquality

#BAL

Answered by dhulipallalakshminar
0

Answer:

Step-by-step explanation:

Similar questions