dy/dx= y tanx-y² secx
Answers
Answered by
1
d/dx(uv) = u dv/dx + v du/dx
= [y sec^2 x + tanx dy/dx] - [y^2 (secx tanx) + 2(secx)y dy/dx]
= y sec^2x + tanx dy/dx - y^2 secx tanx - 2y secx dy/dx
= tan dy/dx - 2y secx dy/dx + y sec^2x - y^2 secx tanx
= dy/dx [tanx - 2y secx] + ysecx [secx - y tanx]
= dy/dx [1 - tanx + 2y secx]
= y secx [secx - y tanx]
= ysecx [secx - y tanx] /1 - tanx + 2y secx
Hope it helps u
Please mark it as brainleist
Similar questions