Math, asked by sharmasweta6574, 1 month ago

∫ ( e^5 logx - e^3logx ÷e^4logx-e^2logx ) dx = ?

Answers

Answered by vdwskavinmn
0

People also ask

What is the 9th square number?

81

"Is it possible to recreate this up to 12x12?"

0 Squared = 0

6 Squared = 36

7 Squared = 49

8 Squared = 64

9 Squared = 81

8 more rows

Answered by abhi569
4

Answer:

ex + C or /2 + C

Step-by-step-explanation:

 \int \frac{e {}^{5}logx  - {e}^{3}  logx}{ {e}^{4}logx -  {e}^{2}logx  } dx \\  \\  \int  \frac{e {}^{3}logx( {e}^{2}   - 1)}{ {e}^{2} logx( {e}^{2} - 1) } dx \\  \\  \int e \: dx \\  \\  ex + C

If your question is:  \int \frac{e^{5 logx} - e^{3logx}}{e^{4logx} - e^{2logx}} dx

 \implies\int \frac{e^{5 log_e x} - e^{3log_ex}}{e^{4log_ex} - e^{2log_ex}} dx \\  \\  \implies\int \frac{x^{5 log_e e} - x {}^ {3log_ee}}{x^{4log_ee} - x^{2log_ee}} dx \\  \\ \implies \int \frac{ {x}^{5(1)  }  -  {x}^{3(1)} }{ {x}^{4(1)} -  {x}^{2(1)}  } dx

 \implies  \int \frac{ { {x}^{} }^{5}  -  {x}^{3} }{ {x}^{4}  -  {x}^{2} } dx \\  \\  \implies \int \frac{ {x} ( {x}^{4}  -  {x}^{2} )}{ x {}^{4}   -  {x}^{2}} dx

 \\  \implies\int x \: dx \\ \\\implies  \frac{ {x}^{2} }{2}  + C

Similar questions