Math, asked by sanyhembrom65, 9 months ago

(e)
A shopkeeper sold two radio at Rs 700 each. On one he gains 12% and on the other he less 20%. Find
the loss or gain percent in the whole transaction.​

Answers

Answered by Anonymous
10

 \textrm{ ⚝GIVEN:-}

 \tt f1st \: radio -  \\  \tt s.p = rs.700 \\  \tt gain = 12\%

 \tt 2nd \: radio -  \\  \tt s.p = rs.700 \\  \tt gain = 20\%

⍣ \tt FIND:-

Total gain or loss in whole transaction.

 \tt ❂SOLUTION:-

 \tt selling \: price =  \frac{100+p}{(100)}  \times c.p.   \\  \tt  = \frac{100+12}{100}  \times 700 \\   \tt =  \frac{ 112}{ 1\cancel{00}}\times7\cancel{00}= rs.784

 \tt selling\: price =  \frac({100-L}{100  } ) \times c.p.   \\  \tt  = \frac{100-20}{100}  \times 700 =  \frac{80}{100}  \times 700 \\   \tt =  \frac{80}{1\cancel{00}} \times 1\cancel{00}= rs.560

  \tt \therefore total \: selling\: price \: is = rs.784+ 560 \\  \tt = rs.1,344

  \tt  total \: cost \: price \: is = rs.700 \times 2  \\  \tt = rs.1400

  \tt  Thus, \: cost \: price \: is \: greater \: than \:  \\  \tt selling \: price

  \tt  hence, \: there \: is \: a \: loss \: of:-

C.P.-S.P.=1,400-1,344=rs.56

\tt L\% = \frac{ L}{cost\:price}\times100

\tt = \frac{56}{14\cancel{00}}\times1\cancel{00}

\tt=4\%

{\boxed \therefore Total loss \% is 4\%}

Answered by Anonymous
18

» To Find :

The Profit or Loss Percentage in the whole transaction.

» Given :

  • Cost Price of the Two Radios = ₹ 700.

  • Profit percentage on the first Radio = 12 %

  • Loss Percentage on the second Radio = 20 %

» We Know :

Selling Price :

\sf{\underline{\boxed{SP = \left(1 \pm \dfrac{Profit/loss}{100}\right)\:of\:CP}}}

Profit Percentage :

\sf{\underline{\boxed{P\% = \left(\dfrac{P}{CP} \times 100\right)\%}}}

Loss Percentage :

\sf{\underline{\boxed{L\% = \left(\dfrac{L}{CP} \times 100\right)\%}}}

Where ,

  • P = Profit
  • L = Loss
  • SP = Selling Price
  • CP = Cost Price
  • P% = Profit Percentage
  • L% = Loss Percentage

Profit /Loss :

  • Profit = SP - CP

  • Loss = CP - SP

» Concept :

According to the question , we have to find the Profit/loss % on the whole transaction.

So ,first we have to find the total Cost Price and then the total selling price of the transaction.

And then , by using the profit /loss Percentage Formula, we can find the Total Gain/Loss Percentage.

» Solution :

Total Cost Price :

  • Cost of the two radios = 700

So, the If we add the cost price of the two radios ,then we will get the total cost Price i.e,

\sf{\Rightarrow 700 + 700}

\sf{\Rightarrow 1400}

Hence, the Total Cost Price of the whole transaction is ₹ 1400.

Total Selling Price :

Selling price of the First Radio :

  • CP = ₹ 700

  • P % = 12 %

Using the formula ,and substituting the value in it ,we get :

\sf{\underline{\boxed{SP = \left(1 + \dfrac{Profit}{100}\right)\:of\:CP}}}

\sf{\Rightarrow SP = \left(1 + \dfrac{12}{100}\right) \times 700}

\sf{\Rightarrow SP = \left(\dfrac{100 +12}{100}\right) \times 700}

\sf{\Rightarrow SP = \left(\dfrac{112}{100}\right) \times 700}

\sf{\Rightarrow SP = \left(\dfrac{112}{\cancel{100}}\right) \times 7\cancel{00}}

\sf{\Rightarrow SP = 112 \times 7}

\sf{\Rightarrow SP = 784}

Hence ,the selling price for first Radio is ₹ 784.

Selling price of the second Radio :

  • CP = ₹ 700

  • L % = 20 %

Using the formula ,and substituting the value in it ,we get :

\sf{\underline{\boxed{SP = \left(1 - \dfrac{Loss}{100}\right)\:of\:CP}}}

\sf{\Rightarrow SP = \left(1 - \dfrac{20}{100}\right) \times 700}

\sf{\Rightarrow SP = \left(\dfrac{100 - 20}{100}\right) \times 700}

\sf{\Rightarrow SP = \left(\dfrac{80}{100}\right) \times 700}

\sf{\Rightarrow SP = \left(\dfrac{80}{\cancel{100}}\right) \times 7\cancel{00}}

\sf{\Rightarrow SP = 80 \times 7}

\sf{\Rightarrow SP = 560}

Hence ,the selling price for first Radio is ₹ 560.

Total Selling Price = Selling Price on the First Radio + Selling Price on the second Radio.

\sf{\Rightarrow 784 + 560}

\sf{\Rightarrow 1344}

Hence, the Total selling Price of the whole transaction is ₹ 1344.

ATS ,

Since ,the Selling Price is less than the Cost Price , it is loss.

To Find the Loss For the Whole transaction :

  • Total Selling Price = ₹ 1344
  • Total Cost Price = ₹ 1400

Using the formula ,and Substituting the values in it ,we get :

\sf{\underline{\boxed{Loss = CP - SP}}}

\sf{\Rightarrow Loss = 1400 - 1344}

\sf{\Rightarrow Loss = 56}

Hence , the loss on the whole transaction is ₹ 56.

Loss Percentage :

  • Loss = ₹ 56

  • CP = ₹ 1400

Using the formula and substituting the values in it , we get :

\sf{\underline{\boxed{L\% = \left(\dfrac{L}{CP} \times 100\right)\%}}}

\sf{\Rightarrow L\% = \left(\dfrac{56}{1400} \times 100\right)\%}

\sf{\Rightarrow L\% = \left(\dfrac{56}{14\cancel{00}} \times \cancel{100}\right)\%}

\sf{\Rightarrow L\% = \left(\dfrac{56}{14}\right)\%}

\sf{\Rightarrow L\% = \left(\dfrac{\cancel{56}}{\cancel{14}}\right)\%}

\sf{\Rightarrow L\% =  4 \%}

Hence ,the loss Percentage on the whole transaction is 4 %.

» Additional information :

  • Percentage Less =

\left(\dfrac{(Greater - smaller)}{Greater} \times 100\right)\%

  • CP =

\dfrac{100 \times SP}{100 \pm Profit/Loss\%}

Similar questions