Math, asked by Georgea320, 9 months ago

The sum of the radius and height of a cylinder is 35 cm its total surface area is 1540 cm sq what is the volume of the cylinder

Answers

Answered by SarcasticL0ve
5

GivEn:

  • The sum of the radius and height of a cylinder is 35 cm.

  • Total surface of Cylinder is 1540 cm²

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Volume of cylinder.

⠀⠀⠀⠀⠀⠀⠀

SoluTion:

⠀⠀⠀⠀⠀⠀⠀

As per givEn Question,

⠀⠀⠀⠀⠀⠀⠀

\bf Here \begin{cases} & \text{(r + h) = 35}  \\ & \text{TSA of Cylinder = $ \sf 1540 cm^3$}  \end{cases}

⠀⠀⠀⠀⠀⠀⠀

So , As we know that,

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{TSA\;of\;cylinder = 2 \pi r(r + h)}}}}

⠀⠀⠀⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2 \times \dfrac{22}{7} \times r(35) = 1540

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2 \times \dfrac{22}{ \cancel{7}} \times r( \cancel{35}) = 1540

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2 \times 22 \times r \times 5 = 1540

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 44 \times r \times 5 = 1540

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf r = \dfrac{1540}{44 \times 5}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf r = \cancel{ \dfrac{1540}{220}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\bf \pink{r = 7\;cm}

⠀⠀⠀⠀⠀⠀⠀

━━━━━━━━━━━━━━━

GivEn that,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf r + h = 35

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 7 + h = 35

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf h = 35 - 7

⠀⠀⠀⠀⠀⠀⠀

:\implies\bf \pink{h = 28\;cm}

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Now,\;we\;have\;to\;find\;volume\;of\;cylinder,}}}

⠀⠀⠀⠀⠀⠀⠀

As we know that,

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Volume\;of\;cylinder = \dfrac{1}{3} \pi r^2h}}}}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;{\underline{\sf{Putting\;values\;:}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf V = \dfrac{1}{3} \times \dfrac{22}{7} \times 7 \times 7 \times 28

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf V = \dfrac{1}{3} \times \dfrac{22}{ \cancel{7}} \times \cancel{7} \times 7 \times 28

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf V = \dfrac{1}{3} \times 22 \times 7 \times 28

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf V = \dfrac{1}{3} \times 4312

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf V = \dfrac{4312}{3}

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\purple{1437.33\;cm^3 \;(approx)}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

\therefore Hence, The volume of cylinder is 1437.33 cm³

Similar questions