E and F are point on the PQ and PR respectively a triangle PQR for PE =3.9 cm, EQ = 3 cm, PF=3.6 cm and FR=2.4 cm check whether EF || QR. start yes or no
Answers
Answer:SOLUTION :
(i)Given :
PE = 3.9 cm, EQ = 3 cm ,PF = 3.6 cm, FR = 2,4 cm
In ΔPQR, E and F are two points on side PQ and PR respectively.
∴ PE/EQ = 3.9/3 = 39/30 = 13/10 = 1.3
[By using Basic proportionality theorem]
And, PF/FR = 3.6/2.4 = 36/24 = 3/2 = 1.5
So, PE/EQ ≠ PF/FR
Hence, EF is not || QR.
[By Converse of basic proportionality theorem]
(ii) Given :
PE = 4 cm, QE = 4.5 cm, PF = 8cm, RF = 9cm
∴ PE/QE = 4/4.5 = 40/45 = 8/9
[By using Basic proportionality theorem]
And, PF/RF = 8/9
So, PE/QE = PF/RF
Hence, EF || QR.
[By Converse of basic proportionality theorem]
(iii) Given :
PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm, PF = 0.36 cm
Here, EQ = PQ - PE = 1.28 - 0.18 = 1.10 cm
And, FR = PR - PF = 2.56 - 0.36 = 2.20 cm
So, PE/EQ = 0.18/1.10 = 18/110 = 9/55
And, PE/FR = 0.36/2.20 = 36/220 = 9/55
∴ PE/EQ = PF/FR.
Hence, EF || QR.
[By Converse of basic proportionality theorem]
HOPE THIS ANSWER WILL HELP YOU✌✌✌✌✌