Math, asked by mharshit2006, 4 months ago

(e) If a two-digit number is divided by the sum of the digits, the quotient is 9. But the number
obtained by reducing the digit at the tens place by four times the digit at the units place, leaves
the remainder 5 when divided by the sum of the digits of the original number. Find the
original number.

Answers

Answered by samanvi17
5

Answer:

Let the digit at tens place be x and the digit at ones place be y

Hence number is 10x+y

Now according to the question 10x+yx+y=9⇒10x+y=9x+9y⇒x=8y .........(1)Also according to the question10(x−4y)=4(x+y)+5⇒10x−40y=4x+4y+5⇒6x−43y=5.......(2)Now using the  the value of x from (1) and putting in (2) we get6×(8y)−43y=5⇒48y−43y=5⇒5y=5⇒y

Answered by harshitakriplani29
0

Hi thank you for answering

Similar questions