E is the mid point of AD. prove that ar(∆BEC) =1/2 ar (∆ABC)
Answers
Answered by
2
Given: E is any point on median AD of a Δ ABC.
To Prove: area(Δ ABC) = area(Δ ACE).
Proof: In Δ ABC,
AD is a median.
∴ area(Δ ABD) = area(Δ ACD) ….(1)
In Δ EBC,
ED is a median.
∴ area(Δ EBD) = area(Δ ECD) …..(2)
Subtracting (2) from (1), we get
area(Δ ABD) – area(Δ EBD) = area(Δ ACD) – area(Δ ECD)
⇒ area(Δ ABE) = area(Δ ACE).
Using this we can prove ar(ΔBEC)=1/2 ar(ΔABC).
To Prove: area(Δ ABC) = area(Δ ACE).
Proof: In Δ ABC,
AD is a median.
∴ area(Δ ABD) = area(Δ ACD) ….(1)
In Δ EBC,
ED is a median.
∴ area(Δ EBD) = area(Δ ECD) …..(2)
Subtracting (2) from (1), we get
area(Δ ABD) – area(Δ EBD) = area(Δ ACD) – area(Δ ECD)
⇒ area(Δ ABE) = area(Δ ACE).
Using this we can prove ar(ΔBEC)=1/2 ar(ΔABC).
Similar questions