Math, asked by harishnvhk, 5 months ago

e range of the function f(x) =1/
|sin xl+1/|cos xl​

Answers

Answered by ganeshholge7
0

Answer:

1/|sinx|+|cosx| € [2√2 , ●●)hence range of f(x) is [2√2,●●) .

Answered by shadowsabers03
8

By AM\geq GM inequality, we have,

\longrightarrow\dfrac{\dfrac{1}{|\sin x|}+\dfrac{1}{|\cos x|}}{2}\geq\sqrt{\dfrac{1}{|\sin x\cos x|}}

\longrightarrow\dfrac{1}{|\sin x|}+\dfrac{1}{|\cos x|}\geq\dfrac{2}{\sqrt{|\sin x\cos x|}}

Or we rewrite,

\longrightarrow f(x)\geq\dfrac{2}{\sqrt{\dfrac{|\sin(2x)|}{2}}}

\longrightarrow f(x)\geq\dfrac{2\sqrt2}{\sqrt{|\sin(2x)|}}

To get minimum value of f(x), denominator of RHS should be maximum, so we need to take \sin(2x)=1, i.e., its maximum value.

Then we get,

\longrightarrow f(x)\geq2\sqrt2

Hence the range is,

\longrightarrow\underline{\underline{f(x)\in\left[2\sqrt2,\ \infty\right)}}

Similar questions