Math, asked by titli1150, 9 months ago


Each side of a rhombus is 15 cm and the length of one of its diagonals is 24cm.The area
of the rhombus is
(a) 432 cm
(d) 144 cm2
(b) 216 cm 2
(c) 180 cm2

From class 8. Plz explain with step by step....​

Answers

Answered by Anonymous
26

» Question :

Each side of a rhombus is 15 cm and the length of one of its diagonals is 24cm. Then find the area

of the rhombus .

» To Find :

The Area of the Rhombus.

» Given :

  • One of the Diagonal of the Rhombus \rightarrow D_{1} = 24

  • Equal side of the Rhombus = 15 cm

» We Know :

Pythagoras theorem :

\sf{\underline{\boxed{h^{2} = p^{2} + b^{2}}}}

Where ,

  • h = Hypotenuse
  • b = Base
  • p = Height

Area of a Rhombus :

\sf{\underline{\boxed{A_{R} = \dfrac{1}{2} \times Product\:of\:its\:parallel\:sides}}}

» Concept :

To Find the area of the Rhombus ,first we have to find the other parallel side as they directly proportional to each other.

\sf{\boxed{A_{R} \propto D_{R}}}

By looking at the figure ABE ,we can conclude that the figure is right-angled triangle .

So, by using the Pythagoras theorem ,we can find the length BE.

  • Hypotenuse (h) ➝ AB = 15 cm
  • Height (p) ➝ AE = 12 cm

Let the base be x cm

Formula :

\sf{\underline{\boxed{h^{2} = p^{2} + b^{2}}}}

Substituting ,the values in it ,we get :

\sf{\Rightarrow 15^{2} = 12^{2} + x^{2}}

\sf{\Rightarrow 15^{2} - 12^{2} = x^{2}}

\sf{\Rightarrow \sqrt{15^{2} - 12^{2}}= x}

\sf{\Rightarrow \sqrt{225 - 144}= x}

\sf{\Rightarrow \sqrt{81}= x}

\sf{\Rightarrow 9 cm = x}

Hence ,the base BE is 9 cm.

Now ,we know that the two diagonalas of a Rhombus is equally divided by each other at right-angles , so the other diagonal of the Rhombus is :

D_{R} = 2 \times BE

\Rightarrow D_{R} = 2 \times 9

\Rightarrow D_{R} = 18 cm

Hence, the other diagonal is 18 cm.

Now ,by the two Diagonals we find the area if the Rhombus.

» Solution :

Area of the Rhombus :

  • Diagonal of the Rhombus \rightarrow D_{1} = 24

  • Diagonal of the Rhombus \rightarrow D_{2} = 18 cm

Formula :

\sf{\underline{\boxed{A_{R} = \dfrac{1}{2} \times Product\:of\:its\:parallel\:sides}}}

Substituting ,the values in it ,we get :

\sf{\Rightarrow A_{R} = \dfrac{1}{2} \times 24 \times 18}

\sf{\Rightarrow A_{R} = \dfrac{1}{\cancel{2}} \times 24 \times \cancel{18}}

\sf{\Rightarrow A_{R} =  24 \times 9}

\sf{\Rightarrow A_{R} =  216 cm^{2}}

Hence, the area of the Rhombus is 216 cm².

» Diagram :

\setlength{\unitlength}{1 cm}\begin{picture}(0,0) \thicklines\qbezier( - 2.828,0)( - 2.828,0)(0,2.828) \qbezier(2.828,0)(2.828,0)(0,2.828)\qbezier(2.828,0)(2.828,0)(0, - 2.828)\qbezier(0, - 2.828)( +0, - 2.828)( - 2.828,0) \put( - 2.9,0){ \line(1,0){5.6}}\put(  - 0.1, - 2.828){ \line(0,1){5.6}} \put( - 2,0.2){ $\bf12 \ cm$}\put( 0.5,0.2){ $\bf12 \ cm$} \put( - 0.1, 0.4){ \line(1,0){0.4}}\put( 0.3, 0.4){ \line(0, - 1){0.4}}\put(  - 3,0.3){ $\bf A$}\put(  - 1,2.4){ $\bf B$}\put(2.7,0.2){ $\bf C$}\put(0.2, - 2.9){ $\bf D$}\put( - 2.6,1.7){ $\bf15\ cm$}\qbezier( - 1,  -1.3)(  - 1,  - 1.3)(  - 1.5, -1.8)\qbezier( 2, 1.5)( 2, 1.5)( 1.4, 0.9)\qbezier(  - 1.8, 1.5)(  - 1.8, 1.5)(  - 1.3, 1.2)\qbezier( 1.8, - 1.5)( 1.8,  - 1.5)( 1.3,  - 0.9)\end{picture}

» Additional information :

  • Surface area of a Cube = 6(a)².

  • Curved surface area = 4(a)²

  • Surface area of a Cuboid = 2(lb + lh + bh)

  • Curved surface area of a Cuboid = 2(l + b)h
Attachments:
Answered by MaIeficent
41

Step-by-step explanation:

\bf{\underline{\underline\red{Given:-}}}

  • Each side of a rhombus is 15 cm

  • The length of one of its diagonals is 24cm

\bf{\underline{\underline\blue{To\:Find:-}}}

  • The area of the rhombus

\bf{\underline{\underline\green{Solution:-}}}

Let ABCD be the rhombus

Given:-

Diagonal BD = 24cm

Length of sides of rhombus

→ AB = BC = CD = AD = 15cm

As we know that

The diagonals of a rhombus bisect each other at right angles ( 90° )

It divided the diagonal into two equal halves.

So:-

\rm \implies BO =  \dfrac{1}{2}  \times BD

\rm \implies BO =  \dfrac{1}{2}  \times 24

\rm \implies BO =  12cm

In ∆AOB

By applying Pythagoras theorem:-

 \boxed{ \rm { {Base}^{2} +  {Height}^{2}   = Hypotenuse}^{2} }

Here:-

• Base = BO

• Height = AO

• Hypotenuse = AB

→ AO² + BO² = AB²

→ AO² = AB² - BO²

→ AO² = 15² - 12²

→ AO² = 225 - 144

→ AO² = 81

\rm AO =  \sqrt{81}

→ AO = 9cm

Since:-

→ AC = 2 × AO

→ AC = 2 × 9

→ AC = 18cm

We have:-

One diagonal = 24cm

Other diagonal = 18cm

\boxed{ \rm \leadsto Area \: of \: rhombus \:  =  \frac{1}{2}  \times  d_{1} \times  d_{2} }

Here:-

\rm d_{1}  \: and \:   d_{2} \: are \: the \: diagonals \: of \: the \: rhombus

Area of rhombus

 =  \dfrac{1}{2}  \times 24 \times 18

= 12 × 18

= 216cm²

\boxed{ \rm \therefore Area \: of \: rhombus =  {216cm}^{2} }

Attachments:
Similar questions