Math, asked by mahamayamishra5427, 11 months ago

Each side of an equilateral  is 8cm. The height of  is

(a) 4 cm (b) 8 cm (c) 16 cm (d) None​

Answers

Answered by DrNykterstein
0

</p><p></p><p>\bold{\underline{\sf Given:}} </p><p>\\ </p><p>\sf \rightarrow Side \: of \: the \: equilateral \: triangle, \: s = 8 cm \\ \\</p><p></p><p>\bold{\underline{\sf To Find:}} </p><p>\\ </p><p>\sf \rightarrow Height \: of \: the \: equilateral \: triangle, \: h = ? </p><p></p><p>\\ \\</p><p></p><p>\bold{\underline{\sf Solution:}} </p><p>\\ </p><p>\sf \quad Height \: of \: eq. \Delta = \frac{\sqrt{3} side }{2} \\ </p><p>\sf Substitute \: the \: value \: of \: side, \: we \: get </p><p>\\ \\</p><p> \sf  \rightarrow \quad h = \frac{\sqrt{3}}{\cancel{2}} \cdot \cancel{8} \\ \\</p><p> \sf  \rightarrow \quad h = 4\sqrt{3} \: cm</p><p></p><p>\\ \\</p><p></p><p>\sf Option \: (D) \quad - None</p><p></p><p>

Answered by Anonymous
3

{\huge {\underline {\mathfrak {\orange  {Answer}}}}}

Given :-

Height of equilateral triangle = 6cm

Find :-

The area of triangle = ?

Solution :-

As we know,

Area of equilateral triangle = \frac {\sqrt {3}}{4}× {a}^{2}

Now,

Putting values in formula

= \frac {\sqrt {3}}{4}× {a}^{2}

= \frac {\sqrt {3}}{4}× {8}^{2}

= \frac {\sqrt {3}}{4}× 64

= \sqrt {3} × 14

= 1.732 × 14

= 27.712

Option d) None

_________________________

Similar questions