Math, asked by shivchaubey33, 11 months ago

एक आयत की लम्बाई में 60% की वृद्धि करने पर उसकी चौड़ाई में कितने प्रतिशत की कमी करनी होगी जिससे आयत का क्षेत्रफल न बदले?

Answers

Answered by slicergiza
2

Width should be decreased by 37.5%

Step-by-step explanation:

Consider l be the length and w be the width of the rectangle,

So, original area,

A=l\times w

After increasing length by 60% and decreasing width by x%,

New length = (100+60)% of l = 160% of l

New width = (100-x)% of w = (100-x)% of w

So, new area,

A' = 160% of l × (100-x)% of w = \frac{160(100-x)lw}{10000}

Change in area = A' - A

=\frac{160(100-x)lw}{10000}-lw

=\frac{16000lw - 160xlw - 10000lw}{10000}

=\frac{6000lw - 160xlw}{10000}

If change in area = 0,

\frac{6000lw - 160xlw}{10000}=0

6000lw - 160xlw=0

6000 - 160x=0

6000 = 160x

\implies x =\frac{6000}{160}=37.5

Hence, width should be decreased by 37.5%.

#Learn more:

किसी वर्ग की भुजा 10% की कमी करने पर उसके क्षेत्रफल में कितने प्रतिशत की कमी या वृद्धि होगी

https://brainly.in/question/3267681

Similar questions