एका पेटीत 64 आंबे याप्रमाणे 1200पेट्या होत्या.ते सर्व आंबे एकत्र करून नवीन 1280 पेट्या तयार केल्या; तर प्रत्येक पेटीत किती आंबे असतील?
Answers
Answer:
Question
Prove that :
\sf\dfrac{\cot\theta+\csc\theta}{\sin\theta+\tan\theta}=\cot\theta\times\csc\theta
sinθ+tanθ
cotθ+cscθ
=cotθ×cscθ
Solution :
We have to prove that :
\rm\dfrac{\cot\theta+\csc\theta}{\sin\theta+\tan\theta}=\cot\theta\times\csc\theta
sinθ+tanθ
cotθ+cscθ
=cotθ×cscθ
Now ,If we convert LHS tanθ and cotθ in in terms of sinθ and cosθ, And Manipulate. We'll get answer.
Let's Try something Different :
First solve LHS
\bf\blue{LHS}LHS
\sf=\dfrac{\cot\theta+\csc\theta}{\sin\theta+\tan\theta}=
sinθ+tanθ
cotθ+cscθ
Multiply , Numerator and denominator by cotθ×cosec θ . Then ,
\sf=\dfrac{\cot\theta+\csc\theta}{\sin\theta+\tan\theta}\times\dfrac{\csc\theta\times\cot\theta}{\csc\theta\times\cot\theta}=
sinθ+tanθ
cotθ+cscθ
×
cscθ×cotθ
cscθ×cotθ
\sf=[\cot\theta\times\csc\theta]\times\dfrac{\cot\theta+\csc\theta}{\sin\theta+\tan\theta}\times\dfrac{1}{\csc\theta\times\cot\theta}=[cotθ×cscθ]×
sinθ+tanθ
cotθ+cscθ
×
cscθ×cotθ
1
\sf=[\cot\theta\times\csc\theta]\times\dfrac{\cot\theta+\csc\theta}{(\sin\theta+\tan\theta)(\csc\theta\times\cot\theta)}=[cotθ×cscθ]×
(sinθ+tanθ)(cscθ×cotθ)
cotθ+cscθ
\sf=[\cot\theta\times\csc\theta]\times\dfrac{\cot\theta+\csc\theta}{\sin\theta\csc\theta\cot\theta+\tan\theta\cot\csc\theta}=[cotθ×cscθ]×
sinθcscθcotθ+tanθcotcscθ
cotθ+cscθ
\sf=[\cot\theta\times\csc\theta]\times\dfrac{\cot\theta+\csc\theta}{\cot\theta+\csc\theta}=[cotθ×cscθ]×
cotθ+cscθ
cotθ+cscθ
\sf=\cot\theta\csc\theta=cotθcscθ
\bf\green{=RHS}=RHS
Hence, Proved !