Math, asked by shivaniranga366, 6 months ago

एक शंकु की ऊंचाई ज्ञात कीजिए जिसका व्यास 10 सेंटीमीटर और प्रयोग ऊंचाई 13 सेंटीमीटर है​

Answers

Answered by Anonymous
6

\huge{\mathbb{\red{ANSWER:-}}}

For a Cone -

Given :-

\sf{Diameter (d) = 10 \: cm}

\sf{Slant \: height (L) = 13 \: cm}

To Find :-

\sf{perpendicular \: height \: of \: the \: cone (h) = ?}

Using Formula :-

\sf{L^{2} = r^{2} + h^{2}}

Solution :-

\sf{radius \: of \: the \: cone =\dfrac{d}{2}}

\sf{r =\dfrac{10}{2} = 5 \: cm}

By Using Formula :-

\sf{L^{2} = r^{2} + h^{2}}

\sf{h^{2} = L^{2} - r^{2}}

\sf{h =\sqrt{L^{2} - r^{2}}}

\sf{h =\sqrt{13^{2} - 5^{2}}}

\sf{h =\sqrt{169 - 25}}

\sf{h =\sqrt{144}}

\sf{h = 12 \: cm}

\sf{The \: perpendicular \: height \: of \: the \: cone \: is \: 12 \: cm.}

Short method :-

\sf{As \: we \: know \: about \: triplets -}

For example -

\sf{3 , 4 , 5}

Here ,

\sf{3^{2} + 4^{2} = 5^{2}}

same As -

\sf{5 , 12 , 13}

\sf{8 , 15 , 17}

\sf{7 , 24 , 25}

For this question -

\sf{Using \: triplet \: is \: (5 , 12 , 13)}

\sf{Two \: values \: are \: 5 \: and \: 13 \:  respectively .}

\sf{then \: , \: 3rd \: is \: surely \: 12.}

\sf{This \: is \: the \: answer .}

Similar questions