Math, asked by BrainlyHelper, 1 year ago

एक  \bigtriangleup ABC, \angle C = 3  \angle B = 2 (\angle A + \angle B) है। त्रिभुज के तीनों कोण ज्ञात कीजिए।

Answers

Answered by MonarkSingh
0
\huge\red{Answer\: is}

Let the angle B = x

so Angle C = 3x

And Angle A =
 =  \frac{3x - 2x}{2}  \\  =  \frac{x}{2}
Now we know that Sum of all angles of triangle are 180
 \frac{x}{2}  + x + 3x = 180 \\  \frac{x + 2x + 6x}{2}  = 180 \\ 9x = 180 \times 2 \\ x =  \frac{180 \times 2}{9}  \\ x = 40 \\  \\ angle \: a \:  =  \frac{40}{2}  = 20 \\ angle \: b = 40 \\ and \: angle \: c \:  = 3 \times 40 = 120
<marquee>Hope it helps you
Answered by abhi178
0
हम जानते हैं कि,
त्रिभुज के तीनों भुजाओं का योगफल 180° होता है ।
अर्थात, \triangle{ABC} के लिए ,
\angle{A}+\angle{B}+\angle{C}=180^{\circ}

दिया गया है, \angle C = 3 \angle B = 2 (\angle A + \angle B)
माना कि \angle{B}=x
तब,\angle C=3x
\angle{A}=0.5x

अब, \angle{A}+\angle{B}+\angle{C}=180^{\circ}
0.5x + x + 3x = 180°
4.5x = 180°
x = 40°
3x = 120°
0.5x = 20°

अतः, \angle A=20,\angle B=40 और \angle C = 120°
Similar questions