Science, asked by rd2272115, 8 months ago

element recognized as metalloids​

Answers

Answered by varshininclass9
3

Answer:

A metalloid is a type of chemical element which has properties in between, or that are a mixture of, those of metals and nonmetals. There is neither a standard definition of a metalloid nor complete agreement on the elements appropriately classified as such. Despite the lack of specificity, the term remains in use in the literature of chemistry.

The six commonly recognised metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. Five elements are less frequently so classified: carbon, aluminium, selenium, polonium, and astatine. On a standard periodic table, all eleven elements are located in a diagonal region of the p-block extending from boron at the upper left to astatine at lower right. Some periodic tables include a dividing line between metals and nonmetals and the metalloids may be found close to this line.

Typical metalloids have a metallic appearance, but they are brittle and only fair conductors of electricity. Chemically, they behave mostly as nonmetals. They can form alloys with metals. Most of their other physical properties and chemical properties are intermediate in nature. Metalloids are usually too brittle to have any structural uses. They and their compounds are used in alloys, biological agents, catalysts, flame retardants, glasses, optical storage and optoelectronics, pyrotechnics, semiconductors, and electronics.

The electrical properties of silicon and germanium enabled the establishment of the semiconductor industry in the 1950s and the development of solid-state electronics from the early 1960s.[1]

The term metalloid originally referred to nonmetals. Its more recent meaning, as a category of elements with intermediate or hybrid properties, became widespread in 1940–1960. Metalloids are sometimes called semimetals, a practice that has been discouraged,[2] as the term semimetal has a different meaning in physics than in chemistry. In physics, it specifically refers to the electronic band structure of a substance.

Similar questions