Math, asked by sonakshisharan, 1 year ago

eliminate θ between cosecθ-sinθ=m and secθ-cosθ=n

Answers

Answered by Vaishnavi18
1
Given:
cosecθ-sinθ=m and secθ-cosθ=n


Solution: If m = cosecθ - sinθ = (1 - sin²θ)/sinθ = cos²θ/sinθ............eqn(1) and 
n = secθ - cosθ = (1 - cos²θ)/cosθ = sin²θ/cosθ.................eqn(2)
Then, m/n = cos^3θ/sin^3θ = cot^3θ and n/m = sin^3θ/cos^3θ = tan^3θ. 
Therefore,tan²θ = (m/n)^(2/3) and cot²θ = (n/m)^(2/3). 

squaring equations (1) n (2) & use the fact that cosecθsinθ = secθcosθ = 1, 
m² = cosec²θ + sin²θ - 2 = cot²θ + sin²θ - 1 ......using identity cosec²θ - 1 = cot²θ 
&
n² = sec²θ + cos² - 2 = tan²θ + cos²θ - 1. ......using identity sec²θ - 1 = tan²θ

m² + n² + 2 = cot²θ + tan²θ + sin²θ + cos²θ = cot²θ + tan²θ + 1. 

Subtracting 1 from both the sides,

m² + n² + 1 = (m/n)^(2/3) + (n/m)^(2/3). 
Similar questions