Math, asked by krishivgoyal4u, 11 months ago

Eliminate theta from x = cos theta + sin theta, y = cos theta . sin theta

Answers

Answered by anupama777vidya
5

Answer:

Squaring both sides of q tan θ + p sec θ = x we get, 

(q tan θ + p sec θ)2 = x2 , …………….. (A) 

Now, squaring both sides of p tan θ + q sec θ = y we get, 

(p tan θ + q sec θ)2 = y2, …………….. (B) 

Now subtract (B) from (A) we get, 

x2 - y2 = (q tan θ + p sec θ)2 - (p tan θ + q sec θ) 2

⇒ x2 - y2 = (q2 tan2 θ + p2 sec2 θ + 2qp tan θ sec θ) - (p2 tan2 θ + q2 sec2 θ + 2pq tan θ sec θ) 

⇒ x2 - y2 = q2 tan2 θ + p2 sec2 θ + 2qp tan θ sec θ - p2 tan2 θ - q2 sec2 θ - 2pq tan θ sec θ

⇒ x2 - y2 = q2 tan2 θ - p2 tan2 θ + p2 sec2 θ - q2sec2 θ

⇒ x2 - y2 = tan2 θ (q2 – p2) + sec 2 θ (p2 - q2)

⇒ x2 - y2 = - tan2 θ (p2 - q2) + sec 2 θ (p2 - q2) ⇒ x2 - y2 = sec2 θ (p2 - q2) - tan2 θ (p2 - q2)

⇒ x2 - y2 = (p2 – q2) (sec2 θ - tan2 θ) 

⇒ x2 - y2 = (p2 – q2)(1), [Since sec 2 θ - tan2 θ = 1] 

⇒ x2 - y2 = p2 – q2

Hence the required eliminant is x2 - y2 = p2 - q2.

hope it will help u

Answered by payalchatterje
2

Answer:

After  \theta elimination answer is  {x}^{2}  - 2y = 1

Step-by-step explanation:

Given,

x =  \cos(\theta)  +  \sin(\theta) and y =  \cos(\theta)  \sin(\theta)

Here we want to eliminate \theta

Now we know

 {sin}^{2} \theta +  {cos}^{2} \theta = 1

 {( \sin\theta +  \cos\theta)  }^{2}  - 2sin\theta \: cos\theta = 1

Here value of  \cos(\theta)  \sin(\theta) is y and value of  \cos(\theta)  +  \sin(\theta) is x.

So,

 {( \sin\theta +  \cos\theta)  }^{2}  - 2sin\theta \: cos\theta = 1 \\  {x}^{2} - 2y = 1

After  \theta elimination, answer is  {x}^{2}  - 2y = 1

Here applied formula is  {a}^{2}  +  {b}^{2}  =  {(a + b)}^{2}  - 2ab

Some extra important formulas of Trigonometry,

sin(x)  =  \cos(\frac{\pi}{2}  - x)  \\  \tan(x)  =  \cot(\frac{\pi}{2}  - x)  \\  \sec(x)  =  \csc(\frac{\pi}{2}  - x)  \\ \cos(x)  =  \sin(\frac{\pi}{2}  - x)  \\ \cot(x)  =  \tan(\frac{\pi}{2}  - x)  \\ \csc(x)  =  \sec(\frac{\pi}{2}  - x)

know more about Trigonometry,

https://brainly.in/question/8632966

https://brainly.in/question/11371684

Similar questions