eliminate theta if a cos theta + b sin theta equals to M and a sin theta minus B cos theta equals to n
Answers
Answered by
2
Theta is written as A.
Answer:
a^2 + b^2 = m^2 + n^2.
Step-by-step explanation:
Given,
⇒ acosA + bsinA = m ...( 1 )
⇒ asinA - bcosA = n ...( 2 )
Squaring on both sides of ( 1 ) :
⇒ ( acosA + bsinA )^2 = m^2
⇒ a^2 cos^2 A + b^2 sin^2 A + 2absinAcosA = m^2 ..( 3 )
Squaring on both sides of ( 2 ):
⇒ ( asinA - bcosA )^2 = n^2
⇒ a^2 sin^2 A + b cos^2 A - 2absinAcosA = n^2 ...( 4 )
Adding ( 3 ) and ( 4 ) :
⇒ ( a^2 cos^2 A + b^2 sin^2 A + 2absinAcosA ) + ( a^2 sin^2 A + b cos^2 A - 2absinAcosA ) = m^2 + n^2
⇒ a^2( cos^2 A + sin^2 A ) + b^2( sin^2 A + cos^2 A ) = m^2 + n^2
⇒ a^2 + b^2 = m^2 + n^2 { sin^2 A + cos^2 A = 1 }
Similar questions