Math, asked by mahendraagarwal075, 10 months ago

elimination method ​

Attachments:

Answers

Answered by sharu3438
0

Answer:

x=8

y=4

add both the eqn

I hope u get it .....

make me brainlist...

Answered by llSᴡᴇᴇᴛHᴏɴᴇʏll
62

\frak{\pmb{\underline\red{Elimination \:  Method}}}:-

 \\

\sf1) 2x - 3y = 4  ,  - x + 3y = 4 \\ \\  \sf 2x - 3y = 4 .. ( 1 ) \\ \sf- x + 3y = 4 .. ( 2 ) \\ \\  \sf 1 × 2x - 3y = 4 .. ( 1 )  \\ \sf 2 × - x + 3y = 4 .. ( 2 ) \\ \\  \sf \cancel{ 2x} - 3y = 4 \\\sf  \cancel{- 2x }+ 6y = 8 \\ \sf \underline{ \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }  \\  \sf 3y = 12\\  \\ \sf \: y = \frac{ \cancel{12} \: ^{4} }{ \cancel{3}} \\  \\  {\underline{\boxed{\bf\red{ y = 4}}}}

 \\

\sf{Substitute \:  \red{y = 4} \:  in  \: eq.. ( 1 )}\\  \\  \sf \: 2x - 3y = 4 \\ \\  \sf 2x - 3(4) = 4 \\ \\  \sf 2x - 12 = 4 \\  \\  \sf \: 2x = 4 + 12 \\ \\  \sf 2x = 16 \\ \\  \sf x = \frac{\cancel {16}\:^{8}}{\cancel{2}}  \\ \\ {\underline{\boxed{\bf\red{x = 8}}}}

Similar questions