Math, asked by shiny123456, 9 months ago

В
elimination method we obtain
3-64-b 0 —
- 39
- 6 = 0 -
2 2
2​

Attachments:

Answers

Answered by anshikaverma29
3

3x - 5y = 6 ____(i)

2x + 3y = 61 ____(ii)

Multiplying equation (i) by 2 and (ii) by 3 :

6x - 10y = 12 ___(iii)

6x + 9y = 183 ___(iv)

Subtracting equation (iv) from (iii) :

 6x - 10y  =  12

- 6x -  9y  = -183

--------------------------

-10y - 9y = 12 - 183

-19y = -171

y = 171 / 19

y = 9

Putting value of y in equation (iii) :

6x - 10y = 12

6x - 10(9) = 12

6x - 90 = 12

6x = 12 + 90

6x = 102

x = 17

Hence , x = 17 and y = 9 .

Answered by Anonymous
3

\rm\huge\red{\underline{\underline{ Problem : }}}

Solve this pair of linear equation by elimination method.

➡ 3x - 5y - 6 = 0 ; 2x + 3y - 61 = 0

\rm\huge\red{\underline{\underline{ Solution : }}}

Given that,

By using Elimination Method solve this pair of linear equation :

\sf\:\implies 3x - 5y = 6 ..... (1)

\sf\:\implies 2x + 3y = 61 ..... (2)

To find,

  • Values of x & y.

Let,

Multiply equation (1) with 2 & equation (2) with 3.

We get,

\sf\:\implies 6x - 10y = 12 ..... (3)

\sf\:\implies 6x + 9y = 183 ..... (4)

  • Subtract (3) & (4). We get,

\sf\:\implies - 19y = - 171

\sf\large{\implies y = \frac{- 171}{-19}}

\sf\:\implies y = 9

  • Substitute value of y in (1)

\sf\:\implies 3x - 5(9) = 6

\sf\:\implies 3x - 45 = 6

\sf\:\implies 3x = 6 + 45

\sf\:\implies 3x = 51

\sf\large{\implies x = \frac{51}{3}}

\sf\:\implies x = 17

Verification,

Substitute the values of x & y in (1) to verify.

\sf\:\implies 3x - 5y = >  \green{LHS}

  • Substitute the values.

\sf\:\implies 3(17) - 5(9)

\sf\:\implies 51 - 45

\sf\:\implies 6

\bf\blue{Since,\:LHS = RHS.\: Hence,\:it\:was\:verified.}

\underline{\boxed{\bf{\purple{ \therefore x = 17 ; y = 9}}}}\:\orange{\bigstar}

___________________________ .........

Similar questions