Biology, asked by Anonymous, 1 year ago

Ello ❤

Describe about flame..

⚡ #Himachali forever ⚡

Answers

Answered by ravi9848267328
1

The substances which vapourise while burning, give flames. It is a place where combustion of fuel takes place.  

Kerosene oil and molten wax are substances that give a flame while burning.  

Wood and charcoal are substances that do not vaporise, but still burn, without any flame.

In general flame colour depends on temperature, availability of oxygen and nature of substance that is undergoing combustion.

There are two types of flames. The luminous flame and the non-luminous flame.

Color and temperature of a flame are dependent on the type of fuel involved in the combustion, as, for example, when a lighter is held to a candle. The applied heat causes the fuel molecules in the candle wax to vaporize. In this state they can then readily react with oxygen in the air, which gives off enough heat in the subsequent exothermic reaction to vaporize yet more fuel, thus sustaining a consistent flame. The high temperature of the flame causes the vaporized fuel molecules to decompose, forming various incomplete combustion products and free radicals, and these products then react with each other and with the oxidizer involved in the reaction. Sufficient energy in the flame will excite the electrons in some of the transient reaction intermediates such as the methylidyne radical (CH) and diatomic carbon (C2), which results in the emission of visible light as these substances release their excess energy (see spectrum below for an explanation of which specific radical species produce which specific colors). As the combustion temperature of a flame increases (if the flame contains small particles of unburnt carbon or other material), so does the average energy of the electromagnetic radiation given off by the flame (see Black body).

Other oxidizers besides oxygen can be used to produce a flame. Hydrogen burning in chlorine produces a flame and in the process emits gaseous hydrogen chloride (HCl) as the combustion product.[2] Another of many possible chemical combinations is hydrazine and nitrogen tetroxide which is hypergolic and commonly used in rocket engines. Fluoropolymers can be used to supply fluorine as an oxidizer of metallic fuels, e.g. in the magnesium/teflon/viton composition.

The chemical kinetics occurring in the flame are very complex and typically involve a large number of chemical reactions and intermediate species, most of them radicals. For instance, a well-known chemical kinetics scheme, GRI-Mech,[3] uses 53 species and 325 elementary reactions to describe combustion of biogas.

There are different methods of distributing the required components of combustion to a flame. In a diffusion flame, oxygen and fuel diffuse into each other; the flame occurs where they meet. In a premixed flame, the oxygen and fuel are premixed beforehand, which results in a different type of flame. Candle flames (a diffusion flame) operate through evaporation of the fuel which rises in a laminar flow of hot gas which then mixes with surrounding oxygen and combusts.

In the year 2000, experiments by NASA confirmed that gravity plays an indirect role in flame formation and composition.[11] The common distribution of a flame under normal gravity conditions depends on convection, as soot tends to rise to the top of a flame (such as in a candle in normal gravity conditions), making it yellow. In microgravity or zero gravity environment, such as in orbit, natural convection no longer occurs and the flame becomes spherical, with a tendency to become bluer and more efficient. There are several possible explanations for this difference, of which the most likely is the hypothesis that the temperature is sufficiently evenly distributed that soot is not formed and complete combustion occurs.[12] Experiments by NASA reveal that diffusion flames in microgravity allow more soot to be completely oxidized after they are produced than do diffusion flames on Earth, because of a series of mechanisms that behave differently in microgravity when compared to normal gravity conditions.[13] These discoveries have potential applications in applied science and industry, especially concerning fuel efficiency.Flames do not need to be driven only by chemical energy release. In stars, subsonic burning fronts driven by burning light nuclei (like carbon or helium) to heavy nuclei (up to iron group) propagate as flames. This is important in some models of Type Ia supernovae. In thermonuclear flames, thermal conduction dominates over species diffusion, so the flame speed and thickness is determined by the thermonuclear energy release and thermal conductivity (often in the form of degenerate electrons).[14]

Answered by FadedPrince
1
\huge\bold{Flame}
_________________________

»» Flame is the most visible part of fire. In flame, there are three main reasons, one is blue, yellow and red...

»» Bluish region is extremely hot and it contains much amount of oxygen for combustion.
_______________________________

⭐HOPE U LIKE IT⭐

Anonymous: thanks
FadedPrince: :)
Similar questions