Energy can neither be created nor be distroyed so why their is a equation E =mc2
Answers
Answered by
2
Hello user☺☺
This equation suggests that you can travel faster than the speed of light.
In short....
The faster you move the heavier you get.
This is called energy-mass equivalence.
Hope this will help☺☺
This equation suggests that you can travel faster than the speed of light.
In short....
The faster you move the heavier you get.
This is called energy-mass equivalence.
Hope this will help☺☺
helpme10:
ok
Answered by
2
answer is here.......
●This famous equation is a little more subtle than it appears. It does provide a relationship between energy and matter, but importantly it does not say that they’re equivalent.e=mc2
is very non-specific and at the time it was written: not super helpful. It merely implies that if matter were to disappear, you’d need a certain amount of some other kind of energy to take its place (wound springs, books higher on shelves, warmer tea, someother kind); and in order for new matter to appear, a prescribed amount of energy must also disappear. Not in any profound way, but in a “when the pendulum swings up, it also slows down” sort of way. Einstein also didn’t suggest any method for matter to appear or disappear
●While it is true that the amount of mass in a nuclear weapon decreases during detonation, that’s also true of every explosive. For that mater, it’s true of everything that releases energy in any form. When you drain a battery it literally weighs a little less because of the loss of chemical energy. The total difference for a good D-battery is about 0.015 picograms, which is tough to notice especially when the battery is ten billion times more massive. About the only folks who regularly worry about the fact that energy and matter can be sometimes be exchanged are high-energy physicists.einstein objected fervently to the idea that quantum mechanics defied energy conservation. And it turns out he was right. After physicists refined quantum mechanics a few years later, scientists understood that although the energy of each electron might fluctuate in a probabilistic haze, the total energy of the electron and its radiation remained constant at every moment of the process. Energy was conserved.
●This famous equation is a little more subtle than it appears. It does provide a relationship between energy and matter, but importantly it does not say that they’re equivalent.e=mc2
is very non-specific and at the time it was written: not super helpful. It merely implies that if matter were to disappear, you’d need a certain amount of some other kind of energy to take its place (wound springs, books higher on shelves, warmer tea, someother kind); and in order for new matter to appear, a prescribed amount of energy must also disappear. Not in any profound way, but in a “when the pendulum swings up, it also slows down” sort of way. Einstein also didn’t suggest any method for matter to appear or disappear
●While it is true that the amount of mass in a nuclear weapon decreases during detonation, that’s also true of every explosive. For that mater, it’s true of everything that releases energy in any form. When you drain a battery it literally weighs a little less because of the loss of chemical energy. The total difference for a good D-battery is about 0.015 picograms, which is tough to notice especially when the battery is ten billion times more massive. About the only folks who regularly worry about the fact that energy and matter can be sometimes be exchanged are high-energy physicists.einstein objected fervently to the idea that quantum mechanics defied energy conservation. And it turns out he was right. After physicists refined quantum mechanics a few years later, scientists understood that although the energy of each electron might fluctuate in a probabilistic haze, the total energy of the electron and its radiation remained constant at every moment of the process. Energy was conserved.
Similar questions