Equation of auxiliary circle of ellipse 2x^2+6xy+5y^2=1
Answers
Answered by
16
equation 2x² + 6xy + 5y² = 1 is ellipse.
Let an auxiliary circle of given ellipse , x² + y² = a²
so, x = acos , y = asin
now, 2a²cos² + 6a²sincos + 5sin² = 1
a²(2cos² + 6sin.cos + 5 - 5cos²) = 1
a²(5 - 3cos² + 3sin2 ) = 1
a²(5 - 3(1 + cos2)/2 + 3sin2) = 1
a²(10 - 3 - 3cos2 + 6sin2) = 2
a²(7 + 6sin2 - 3cos2 ) = 2
here , 7-√45 ≤ 7 + 6sin2 - 3cos2 ≤ 7 + √45
so, 1/(7 -√45) ≤ 1/(6sin2 - 3cos2) ≤ 1/(7 + 45) ,
or, 2/(7 - √45) ≤ a² ≤ 2/(7 + √45)
so, equation of auxiliary circle is x² + y² = a² where a² [2/(7 - √45), 2/(7 + √45)]
Let an auxiliary circle of given ellipse , x² + y² = a²
so, x = acos , y = asin
now, 2a²cos² + 6a²sincos + 5sin² = 1
a²(2cos² + 6sin.cos + 5 - 5cos²) = 1
a²(5 - 3cos² + 3sin2 ) = 1
a²(5 - 3(1 + cos2)/2 + 3sin2) = 1
a²(10 - 3 - 3cos2 + 6sin2) = 2
a²(7 + 6sin2 - 3cos2 ) = 2
here , 7-√45 ≤ 7 + 6sin2 - 3cos2 ≤ 7 + √45
so, 1/(7 -√45) ≤ 1/(6sin2 - 3cos2) ≤ 1/(7 + 45) ,
or, 2/(7 - √45) ≤ a² ≤ 2/(7 + √45)
so, equation of auxiliary circle is x² + y² = a² where a² [2/(7 - √45), 2/(7 + √45)]
Similar questions