Math, asked by starboyk7659, 1 year ago

Equation of auxiliary circle of ellipse 2x^2+6xy+5y^2=1

Answers

Answered by abhi178
16
equation 2x² + 6xy + 5y² = 1 is ellipse.
Let an auxiliary circle of given ellipse , x² + y² = a²

so, x = acos\theta , y = asin\theta

now, 2a²cos²\theta + 6a²sin\thetacos\theta + 5sin²\theta = 1

a²(2cos²\theta + 6sin\theta.cos\theta + 5 - 5cos²\theta) = 1

a²(5 - 3cos²\theta + 3sin2\theta ) = 1

a²(5 - 3(1 + cos2\theta)/2 + 3sin2\theta) = 1

a²(10 - 3 - 3cos2\theta + 6sin2\theta) = 2

a²(7 + 6sin2\theta - 3cos2\theta ) = 2

here , 7-√45 ≤ 7 + 6sin2\theta - 3cos2\theta ≤ 7 + √45

so, 1/(7 -√45) ≤ 1/(6sin2\theta - 3cos2\theta) ≤ 1/(7 + 45) ,

or, 2/(7 - √45) ≤ a² ≤ 2/(7 + √45)

so, equation of auxiliary circle is x² + y² = a² where a² \in [2/(7 - √45), 2/(7 + √45)]
Similar questions