Equation of the line in x and y which is tangent to polar curve r=2costheta
Answers
Answered by
0
Explanation:
First of all this simplifies to
r = 2 sin theta +sin 2theta
the tangent vector is the velocity vector so we differentiate wrt time as a parameter
vec r = (2 sin theta +sin 2theta) hat r
vec r' = vec v
by product rule
= d/dt (2 sin theta +sin 2theta) hat r + (2 sin theta +sin2 theta) d/dt hat r=ddt(2sinθ+sin2θ)ˆr+(2sinθ+sin2θ)ddtˆr
where d/dt hat r = d/dt ((cos theta),(sin theta)) = ((-sin theta),(cos theta)) dot theta = dot theta hat theta
implies (2 cos theta + 2 cos 2theta) \ dot theta \ hat r + (2 sin theta +sin 2theta) \ dot theta \ hat theta⇒(2cosθ+2cos2θ) .θ ˆr+(2sinθ+sin2θ) .θ ˆθ
dropping the dot theta scalar...
= (2 cos theta + 2 cos 2theta) ((cos theta),(sin theta))+ (2 sin theta +sin 2theta) ((-sin theta),(cos theta)) =(2cosθ+2cos2θ)(cosθsinθ)+(2sinθ+sin2θ)(−sinθcosθ)
= ((2 cos^2 theta + 2 cos 2 theta cos theta - 2 sin^2 theta - sin theta sin 2 theta),(2 cos theta sin theta + 2 cos 2 theta sin theta + 2 sin theta cos theta + sin 2 theta cos theta))=⎛⎜⎝2cos2θ+2cos2θcosθ−2sin2θ−sinθsin2θ2cosθsinθ+2cos2θsinθ+2sinθcosθ+sin2θcosθ⎞⎟⎠
= ((1 + 0 - 1 - 1/sqrt 2),(1 + 0 + 1+ 1/sqrt 2))
= (( - 1),(2sqrt 2+ 1))
the slope is therefore
m = -(1+ 2sqrt 2)
r (pi/4) = 1 + sqrt 2
x = r cos theta = 1/sqrt 2+ 1
y = r sin theta = 1/sqrt 2+ 1
So we have
(y - 1/sqrt 2 - 1)/(x - 1/sqrt 2 - 1) = -(1+ 2sqrt 2)
Or
y = -(1+ 2sqrt 2)(x - 1/sqrt 2 - 1) + 1 + 1/sqrt 2
that could be further simplified of course
First of all this simplifies to
r = 2 sin theta +sin 2theta
the tangent vector is the velocity vector so we differentiate wrt time as a parameter
vec r = (2 sin theta +sin 2theta) hat r
vec r' = vec v
by product rule
= d/dt (2 sin theta +sin 2theta) hat r + (2 sin theta +sin2 theta) d/dt hat r=ddt(2sinθ+sin2θ)ˆr+(2sinθ+sin2θ)ddtˆr
where d/dt hat r = d/dt ((cos theta),(sin theta)) = ((-sin theta),(cos theta)) dot theta = dot theta hat theta
implies (2 cos theta + 2 cos 2theta) \ dot theta \ hat r + (2 sin theta +sin 2theta) \ dot theta \ hat theta⇒(2cosθ+2cos2θ) .θ ˆr+(2sinθ+sin2θ) .θ ˆθ
dropping the dot theta scalar...
= (2 cos theta + 2 cos 2theta) ((cos theta),(sin theta))+ (2 sin theta +sin 2theta) ((-sin theta),(cos theta)) =(2cosθ+2cos2θ)(cosθsinθ)+(2sinθ+sin2θ)(−sinθcosθ)
= ((2 cos^2 theta + 2 cos 2 theta cos theta - 2 sin^2 theta - sin theta sin 2 theta),(2 cos theta sin theta + 2 cos 2 theta sin theta + 2 sin theta cos theta + sin 2 theta cos theta))=⎛⎜⎝2cos2θ+2cos2θcosθ−2sin2θ−sinθsin2θ2cosθsinθ+2cos2θsinθ+2sinθcosθ+sin2θcosθ⎞⎟⎠
= ((1 + 0 - 1 - 1/sqrt 2),(1 + 0 + 1+ 1/sqrt 2))
= (( - 1),(2sqrt 2+ 1))
the slope is therefore
m = -(1+ 2sqrt 2)
r (pi/4) = 1 + sqrt 2
x = r cos theta = 1/sqrt 2+ 1
y = r sin theta = 1/sqrt 2+ 1
So we have
(y - 1/sqrt 2 - 1)/(x - 1/sqrt 2 - 1) = -(1+ 2sqrt 2)
Or
y = -(1+ 2sqrt 2)(x - 1/sqrt 2 - 1) + 1 + 1/sqrt 2
that could be further simplified of course
Similar questions