Math, asked by blueiphone7310, 1 year ago

Equation x^2 + px + q = 0 where p and q are constants, has roots -3 and 5
1). find p and q

Answers

Answered by mysticd
48

Answer:

 \green {Value \: of \: p = -2 \:and \: q=-15}

Step-by-step explanation:

 Given \: -3\:and \: 5 \:are \: roots \: of \\quadratic \: equation \: x^{2}+pc+q=0 ,

 Substitute \:\pink{ x= -3}\:in \: the \\ equation ,we \:get

(-3)^{2} + p(-3) + q = 0

\implies 9 - 3p + q = 0

\implies q = 3p - 9 \: ---(1)

 Substitute \:\pink{ x= 5}\:in \: the \\ equation ,we \:get

 5^{2} + p \times 5 + q = 0

\implies 25 + 5p + q = 0

\implies q = -5p - 25 \: ----(2)

\orange {(1) = (2)}

 3p - 9 = -5p - 25

\implies 3p + 5p = 9 - 25

 \implies 8p = -  16

 \implies p = \frac{-16}{8} = -2

 Substitute \:\pink{ p = -2}\:in \: the \\ equation \:(1),we \:get

\implies q = 3\times (-2)- 9

 = -6 -9 = -15

Therefore.,

 \green {Value \: of \: p =  -2 \:and \: q= -15}

•••♪

Similar questions