establish a relationship to determine the equivalent resistance R of a combination of 3 resistors having resistances r1,r2 and r3 connected in parallel
Answers
Answered by
8
we know that voltage is constant throughout parralel combination of circuits-therefore let the voltage be V
resistances be R1 , R2 , R3 and total resistance be RP
hence current will be I1 I2 I3 and total current be IP
hence the formula of each current will be I1 = V/R1
I2 = V/R2
I3 = V/R3
IP = V/RP
hence we can say that
IP = I1 + I2 + I3
and by substituting values
V/RP = V/R1 + V/R2 + V/R3
if we take V common V/RP = V (1/R1 + 1/R2 + 1/R3)
by cutting V both the sides 1/RP = 1/R1 + 1/R2 + 1/R3
and hence we can say that 1/RP = 1/R1> + 1/R2 + 1/R3
resistances be R1 , R2 , R3 and total resistance be RP
hence current will be I1 I2 I3 and total current be IP
hence the formula of each current will be I1 = V/R1
I2 = V/R2
I3 = V/R3
IP = V/RP
hence we can say that
IP = I1 + I2 + I3
and by substituting values
V/RP = V/R1 + V/R2 + V/R3
if we take V common V/RP = V (1/R1 + 1/R2 + 1/R3)
by cutting V both the sides 1/RP = 1/R1 + 1/R2 + 1/R3
and hence we can say that 1/RP = 1/R1> + 1/R2 + 1/R3
Similar questions