Hindi, asked by p1sjain, 11 months ago

Evaluate 1^2-2^2 +3^2 - 4^2 + ...-2008^2+2009^2​

Answers

Answered by adithyamanoj006
0

Answer:

Solve:

S=1

2

−2

2

+3

2

−4

2

+…−2008

2

+2009

2

on adding and substracting the

square of even numbers we get,

⇒S=(1

2

+2

2

+3

2

+4

2

+…+2008

2

+2009)

2

−2(2

4

+4

2

+…2008

2

).

⇒S= (sum of square of first 2009 natural no.)

−2×(4)×( sum of square of first 1004

natural no. )

⇒S=

6

2009×2010×4019

−2⋅2

2

(1+2

2

+3

2

+…+(1004)

2

)

⇒S=

6

2009

[2010×4019−8(1004×1005)]

⇒S=

6

2009

×2010[4019−4016]

⇒S=

6

2009

×2010×3=2009×1005

=2019045

Explanation:

Similar questions