Math, asked by mukesh6845, 11 months ago

evaluate (1+tan theta + sec theta)(1+cot theta - cosec theta)​

Answers

Answered by BoyBrainly
12

  \underline\bold{ \large { \:  \:  \: Answer \: \:  \:  }}

 \implies 2

 \underline\bold{ \large { \:  \:  \:Explanation  \: \:  \:  }}

 \to(1 +  tan \: \theta + sec   \: \theta) \: (1 +  cot \:   \theta \:  - cosec \:   \theta) \\  \\  \to(1 +  \frac{sin \:  \theta}{cos  \: \theta}  +  \frac{1}{cos  \: \theta} ) \: (1 +  \frac{cos  \: \theta}{ sin \:  \theta}  -  \frac{1}{sin \:  \theta} ) \\  \\  \to( \frac{cos \:  \theta + sin \:  \theta + 1}{cos \:  \theta}) \:  ( \frac{sin \:  \theta + cos  \: \theta - 1}{sin \:  \theta} ) \\  \\  \to \frac{sin \:  \theta \times cos \:  \theta +  {cos}^{2}  \:  \theta - cos  \: \theta +  {sin}^{2} \:  \theta + sin \:  \theta  \times cos \:  \theta - sin \:  \theta + sin \:  \theta + cos \:  \theta - 1 }{sin \:  \theta \:  \times cos  \: \theta}  \\  \\  \to \frac{(sin \:  \theta \times cos \:  \theta + sin \:  \theta \times cos \:  \theta  )+( {cos}^{2}  \:  \theta  \: +  {sin}^{2} \:  \theta  \: )}{sin \:  \theta \:  \times cos  \: \theta \: }  \\  \\  \to \frac{2 \times  sin \:  \theta  \times cos \:  \theta + 1 - 1}{sin  \: \theta \:  \times cos \:  \theta}  \\ \\  \to 2

Similar questions