Evaluate : (1+tanA+ secA) (1+cotA-cosecA)
please don't spam for points whether your account will be deleted by moderator.!!
it's urgent..... I hope you understand that ...
Answers
Answered by
95
GIVEN :
(1+tanA+ secA) (1+cotA-cosecA)
We know that,
tanA = sinA/cosA
secA = 1/cosA
cotA = cosA/sinA
cosecA = 1/sinA
= (1 + sinA/cosA + 1/cosA) (1 + cosA/sinA - 1/sinA)
= (1 + sinA + 1/ cosA ) (1 + cosA - 1 / sinA)
After LCM,
= (cosA + sinA + 1)/cosA (sinA + cosA - 1)/sinAcosA
= (cosA × cosA) + (sinA × sinA) + 1 × (- 1 ) / sinAcosA
= (cosA + sinA)² - 1 / sinAcosA
= cos²A + sin²A + 2SinAcosA - 1 / sinAcosA
We know that,
cos²A + sin²A = 1
= 1 - 1 + 2sinAcosA / sinAcosA
= 2sinAcosA/sinAcosA
= 2
Therefore,
Therefore,(1+tanA+ secA)(1+cotA-cosecA)= 2
Answered by
71
Answer:
(1+tanA+ secA) (1+cotA-cosecA) = 2
Explanation:
Given Problem:
Evaluate : (1+tanA+ secA) (1+cotA-cosecA)
Solution:
= 2
Hence,
(1+tanA+ secA) (1+cotA-cosecA) = 2
Similar questions