Math, asked by latatomer8, 1 month ago

Evaluate √112-√63+224/√28​

Answers

Answered by Anonymous
307

Need To Evaluate :-

  • \sf\:  \sqrt{112} -  \sqrt{63} + \dfrac{224}{ \sqrt{28} }

Solution :-

Basic Concept Used :-

  • Reduce the terms to simplest form.
  • Method of Rationalization :-
  • Rationalization is the process of removing radicals from denominator and multiple and divide by the monomial given in denominator.

Given that :-

\sf :\implies\:  \sqrt{112} -  \sqrt{63} + \dfrac{224}{ \sqrt{28} }    -  -  - (1)\\\\

Consider:-

  • \green{\sf \: \sqrt{112} =  \sqrt{4 \times 4 \times 7} = 4 \sqrt{7}}\\\\
  • \green{\sf \: \sqrt{63} =  \sqrt{3 \times 3 \times 7} = 3 \sqrt{7}} \\\\

\sf :\implies\:\dfrac{224}{\sqrt{28} }=\dfrac{224}{\sqrt{2\times 2\times7}}=\dfrac{224}{2\sqrt{7}} = \dfrac{112}{ \sqrt{7}} \times \dfrac{ \sqrt{7} }{\sqrt{7}} = 16 \sqrt{7}\\\\

  • Therefore,

\sf:\implies\:  \sqrt{112} -  \sqrt{63} + \dfrac{224}{ \sqrt{28}}\\\\

Substituting all the above values :-

\sf \: = \:  \: 4 \sqrt{7} - 3 \sqrt{7} + 16 \sqrt{7}  \\

\sf \: = \:  \:  \sqrt{7}(4 - 3 + 16)\\

\sf\: = \:  \:  \sqrt{7}(1+ 16)\\

\sf \red{\: = \:  \: 17 \sqrt{7}} \\

 \therefore\:  \:   \pink{ \pink{\boxed{ \sf \:\sqrt{112} -  \sqrt{63} + \dfrac{224}{ \sqrt{28} } = 17 \sqrt{7}}}}\\

⠀⠀⠀⠀⠀⠀Laws of exponents :-

  • \:  \:  \:  \: \boxed{ \sf\: {a}^{m} \times  {a}^{n} =  {a}^{m + n}} \\

  • \:  \:  \:  \: \boxed{\sf  \: {a}^{m} \div  {a}^{n} =  {a}^{m  -  n}} \\

  •  \:  \:  \:  \: \boxed{\sf  \: {a}^{0}=1}  \\

  • \:  \:  \:  \: \boxed{\pmb  \: {a}^{ - 1}=\dfrac{1}{a} }\\

  • \:  \:  \:  \: \boxed{\sf \: {a}^{ - n}=\dfrac{1}{ {a}^{n}}}\\

  •  \:  \:  \:  \: \boxed{ \sf \: {( {a}^{n})}^{m}= {a}^{mn} }  \\\\
Similar questions