Math, asked by garry2445, 1 year ago

Evaluate √1183÷√2023​


Anonymous: 13/17

Answers

Answered by AbhijithPrakash
19

Answer:

\dfrac{\sqrt{1183}}{\sqrt{2023}}=\dfrac{13}{17}\quad \left(\mathrm{Decimal:\quad }\:0.76471\dots \right)

Step-by-step explanation:

\dfrac{\sqrt{1183}}{\sqrt{2023}}

\mathrm{Factor\:}1183=13^2\cdot \:7

=\sqrt{13^2\cdot \:7}

\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}

=\sqrt{7}\sqrt{13^2}

=13\sqrt{7}

\mathrm{Factor\:}2023=17^2\cdot \:7

=\sqrt{17^2\cdot \:7}

\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}

=\sqrt{7}\sqrt{17^2}

=17\sqrt{7}

=\dfrac{13\sqrt{7}}{17\sqrt{7}}

\mathrm{Cancel\:the\:common\:factor:}\:\sqrt{7}

=\dfrac{13}{17}

Similar questions