Math, asked by sehgalmilan29, 7 months ago

evaluate 12! -10!/9!​

Answers

Answered by qwvilla
0

( 12! -10! ) / 9! = 1310

Given :

The expression (12! -10!)/9!

To find :

To evaluate the given expression

Solution :

(12! -10!)/9!

= { (12 × 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1) - ( 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1) } / ( 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 )

= ( 479001600 - 3628800 ) / 362880

= 475372800 / 362880

= 1310

* Factorial of a number is equal to the product of all the numbers from 1 till that number.

Hence,( 12! -10! )/9! = 1310

#SPJ3

Answered by chaudharyvikramc39sl
0

Answer:

The value of

\frac{12!-10!}{9!} = 1310

Step-by-step explanation:

Given :

we are given an expression

\frac{12!-10!}{9!}

To Find:

The value of the expression

\frac{12!-10!}{9!}

Solution :

Since we are given the expression

\frac{12!-10!}{9!}

we know that

  • 12 ! = 12 x 11 x 10 x 9 !
  • 10 ! = 10 x 9 !

substituting the value of 12! and 10! we get

\frac{12!-10!}{9!}=\frac{12\ \text{x}\ 11\ \text{x}\ 10\ \text{x}\ 9!-10\ \text{x}\ 9!}{9!}\\

Now take 9! common from the numerator

\frac{12\ \text{x}\ 11\ \text{x}\ 10\ \text{x}\ 9!-10\ \text{x}\ 9!}{9!}=\frac{9!(12\ \text{x}\ 11\ \text{x}\ 10-10)}{9!}\\

Now 9! will cancel out from numerator and denominator

\frac{9!(12\ \text{x}\ 11\ \text{x}\ 10-10)}{9!}\\ = 12 x 11 x 10 -10

Now using the BODMAS principle

1320 - 10 = 1310

Hence we have calculated the value of

\frac{12!-10!}{9!} = 1310

#SPJ2

Similar questions