Math, asked by laeeqhajeera, 2 months ago

Evaluate - {15/14}^-1 × {(12/15)^-1 ÷ (144/255)^-1 pls ans my question and pls write it in a notebook pls​

Attachments:

Answers

Answered by dankstars585
1

Answer:

32/15

Step-by-step explanation:

((15/4)^-1 ) * [((12/15)^-1)/((144/225)^-1)]

=(4/15)* [(15/12)/(225/144)]

=(4/15)* [(15/12)*(144/225)]

=(4/15)*[2160/2700]

=8640/40500

=32/15

Answered by SachinGupta01
21

\underline{\underline{\sf{\maltese\:\:Solution}}}

 \sf  \dashrightarrow \: \left(  \dfrac{15}{4} \right)^{ - 1}  \times  \left(\left(  \dfrac{12}{15}\right)^{ - 1}  \div \left(  \dfrac{144}{225} \right)^{ - 1} \right)

 \sf  \dashrightarrow \: \dfrac{4}{15}   \times  \left(\dfrac{15}{12}  \div   \dfrac{225}{144}  \right)

 \sf  \dashrightarrow \: \dfrac{4}{15}   \times  \left(\dfrac{ {15}}{12}   \times    \dfrac{144}{ {225}  }\right)

 \sf  \dashrightarrow \: \dfrac{4}{15}   \times  \left(\dfrac{ {1}}{1}   \times    \dfrac{12}{ {15}  }\right)

 \sf  \dashrightarrow \: \dfrac{4}{15}   \times  \left(      \dfrac{1 \times 12}{ {1 \times 15}  }\right)

 \sf  \dashrightarrow \: \dfrac{4}{15}   \times  \left(      \dfrac{12}{ {15}  }\right)

 \sf  \dashrightarrow \: \dfrac{4}{ 15}  \times  \dfrac{ {12}}{ {15}  }

 \sf  \dashrightarrow \: \dfrac{4}{ {5} }  \times  \dfrac{ {4}}{ {15}  }

 \sf  \dashrightarrow \: \dfrac{16}{ {75} }

 \sf  \dashrightarrow \:Answer =     \underline{\boxed{ \sf \dfrac{16}{ {75} }}  }

━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\underline{\sf{\maltese\:\:Laws\:of\: Exponents :}}}

\sf \: 1^{st} \: Law = \bigg( \dfrac{m}{n} \bigg)^{a} \times \bigg( \dfrac{m}{n} \bigg)^{b} = \bigg( \dfrac{m}{n} \bigg)^{a + b}

\sf 2^{nd} \: Law =

\sf Case : (i) \: if \: a > b \: then, \bigg( \dfrac{m}{n}\bigg) ^{a} \div \bigg( \dfrac{m}{n}\bigg)^{b} = \bigg( \dfrac{m}{n}\bigg)^{a - b}

 \sf Case : (ii) \: if \: a < b \: then, \bigg( \dfrac{m}{n}\bigg) ^{a} \div \bigg( \dfrac{m}{n}\bigg)^{b} = \dfrac{1}{\bigg( \dfrac{m}{n}\bigg)^{b - a}}

\sf \: 3^{rd} \: Law = \bigg\{ \bigg( \dfrac{m}{n} \bigg)^{a} \bigg\}^{b} = \bigg( \dfrac{m}{n} \bigg)^{a \times b} =\bigg( \dfrac{m}{n} \bigg)^{ab}

\sf \: 4^{th} \: Law = \bigg( \dfrac{m}{n} \bigg)^{ - 1} = \bigg( \dfrac{n}{m} \bigg) =\dfrac{n}{m}

 \sf \: 5^{th} \: Law = \bigg( \dfrac{m}{n} \bigg)^{0} = 1

Similar questions