Math, asked by Kiara11151, 10 months ago

...........................Evaluate................................​

Attachments:

Answers

Answered by BrainlyPopularman
7

Question :

Calculate the value of :

 \\ \:  \:{ \bold{ \int \dfrac{ {e}^{6 log(x) } -  {e}^{5 log(x) }  }{ {e}^{4 log(x) }  -  {e}^{3 log(x) } }.dx }} \\

 \\ \rule {220}{2} \\

ANSWER :

 \:   \\  \implies{ \bold{I = \int \dfrac{ {e}^{6 log(x) } -  {e}^{5 log(x) }  }{ {e}^{4 log(x) }  -  {e}^{3 log(x) } }.dx }} \\

• Using identity –

 \:   \\   \to \: { \red{ \bold{ log( {x}^{a} )  = a log(x)   }}} \\

• So that –

 \:   \\  \implies{ \bold{I = \int \dfrac{ {e}^{ log( {x}^{6} ) } -  {e}^{ log( {x}^{5} ) }  }{ {e}^{ log( {x}^{4} ) }  -  {e}^{ log( {x}^{3} ) } }.dx }} \\

• Now using identity –

 \:   \\   \to \: { \red{ \bold{  {e}^{ log(x) }  = x  }}} \\

• So that –

 \:   \\  \implies{ \bold{I = \int \dfrac{  {x}^{6} -    {x}^{5}   }{  {x}^{4}  -   {x}^{3} }.dx }} \\

 \:   \\  \implies{ \bold{I = \int \dfrac{  {x}^{5}  \cancel{(x - 1) } }{ {x}^{3}  \cancel{(x - 1)}}.dx }} \\

 \:   \\  \implies{ \bold{I = \int \dfrac{  {x}^{5} }{ {x}^{3} }.dx }} \\

 \:   \\  \implies{ \bold{I = \int {x}^{2} .dx }} \\

• We know that –

 \:   \\  \to { \red{ \bold{ \int {x}^{n } .dx  =  \dfrac{ {x}^{n + 1} }{n + 1} + c }}} \\

• So that –

 \:   \\  \implies{ \bold{I =  \frac{ {x}^{2 + 1} }{2 + 1}  + c}} \\

 \:   \\  \implies \large{ \pink{ \boxed{ \bold{I =  \frac{ {x}^{3} }{3}  + c}}}} \\

 \\ \rule {220}{2} \\

Answered by Anonymous
9

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

{\star{\sf{\green{ \int \:  \frac{ {e}^{6logx} -  {e}^{5logx}  }{ {e}^{4logx } -  {e}^{3logx}  } }}}} \\

{\sf{\underline{\purple{Now,}}}}

{\tt{ I =  \int \:  \frac{ {e}^{6 \: logx}  -  {e}^{5 \: logx} }{ {e}^{4 \: logx} -  {e}^{3 \: logx} }  }} \\ \\

\star{\sf{\underline{\blue{Now,\:we\:know\:that \:  log {x}^{a}  = a \: logx,}}}}\\ \\

{\tt{ I =  \int \:   \frac{ {e}^{ {logx}^{6} -  {e}^{ {logx}^{5} }  } }{ {e}^{ {logx}^{4} }  -  {e}^{ {logx}^{3} } }  }} \\  \\

{\sf{\underline{\blue{Now, \:  {e}^{log(x) } = x }}}}\\

{\tt{I =  \int \:  \frac{ {x}^{6} -  {x}^{5}  }{ {x}^{4}  -  {x}^{3} }dx }} \\  \\

{\tt{I =  \int \:  \frac{ {x}^{5}(x - 1) }{ {x}^{3}(x - 1) }dx }}\\ \\

{\tt{I =  \int \:  \frac{ {x}^{5} }{ {x}^{3} }dx }} \\  \\

{\tt{I =  \int   {x}^{5}. {x}^{ - 3}  dx }} \\  \\

{\tt{I =  \int   {x}^{5 - 3}  dx }} \\  \\

{\tt{I =  \int   {x}^{2}  dx }} \\  \\

{\tt{I = \bigg [  \frac{ {x}^{2 + 1} }{2 + 1}  \bigg ] }}  + c\\  \\

{\tt{I = \bigg [  \frac{ {x}^{3} }{3}  \bigg ] }}  + c\\  \\

\boxed{\sf{\underline{\purple{formula \: used.}}}}

{\tt{ \int \:  {x}^{n}dx =  \frac{ {x}^{n  +  1} }{n + 1}  }}  + c  \: (\: where \: n \neq \:  - 1)</p><p>

Similar questions