evaluate (2+√3)^7 + (2 - √3)^7 by binomial theorem
Answers
evaluate (2+√3)^7 + (2 - √3)^7
(2+√3)7+(2−√3)7
=10084
Answer:
10084
thanks
mark it as brainliest
(2+√3)⁷ + (2-√3)⁷ = 10084
Step-by-step explanation:
(x + y)ⁿ = ⁿC₀xⁿy⁰ + ⁿC₁xⁿ⁻¹y¹ +...........................+ ⁿCₙ₋₁x¹yⁿ⁻¹+ ⁿCₙx⁰yⁿ
(2+√3)⁷ = ⁷C₀2⁷(√3)⁰ + ⁷C₁2⁶(√3)¹ + ⁷C₂2⁵(√3)² + ⁷C₃2⁴(√3)³ + ⁷C₄2³(√3)⁴ + ⁷C₅2²(√3)⁵ + ⁷C₆2¹(√3)⁶ + ⁷C₇2⁰(√3)⁷
(2-√3)⁷ = ⁷C₀2⁷(-√3)⁰ + ⁷C₁2⁶(-√3)¹ + ⁷C₂2⁵(-√3)² + ⁷C₃2⁴(-√3)³ + ⁷C₄2³(-√3)⁴ + ⁷C₅2²(-√3)⁵ + ⁷C₆2¹(-√3)⁶ + ⁷C₇2⁰(-√3)⁷
=> (2-√3)⁷ = ⁷C₀2⁷(√3)⁰ - ⁷C₁2⁶(√3)¹ + ⁷C₂2⁵(√3)² - ⁷C₃2⁴(√3)³ + ⁷C₄2³(√3)⁴ - ⁷C₅2²(√3)⁵ + ⁷C₆2¹(√3)⁶ - ⁷C₇2⁰(√3)⁷
Adding Both
(2+√3)⁷ + (2-√3)⁷ = 2(⁷C₀2⁷(√3)⁰ + ⁷C₂2⁵(√3)² + ⁷C₄2³(√3)⁴ + ⁷C₆2¹(√3)⁶ )
=> (2+√3)⁷ + (2-√3)⁷ = 2(128 + 21*32 * 3 + 35*8* 9 + 7*2*27 )
=> (2+√3)⁷ + (2-√3)⁷ = 2(128 + 2016 + 2520 + 378 )
=> (2+√3)⁷ + (2-√3)⁷ = 2(5042 )
=> (2+√3)⁷ + (2-√3)⁷ = 10084
Learn more:
Use binomial theorem to expand (2+X)5 in ascending powers of x ...
https://brainly.in/question/11212431
The first three terms in the binomial expansion of ( ) n x y + are 1, 56 ...
https://brainly.in/question/13197893