Math, asked by urbonkp39lgj, 1 year ago

evaluate (2+√3)^7 + (2 - √3)^7 by binomial theorem

Answers

Answered by Prateek001
12
let's solve your question

evaluate (2+√3)^7 + (2 - √3)^7

(2+√3)7+(2−√3)7

=10084

Answer:
10084

thanks
mark it as brainliest

urbonkp39lgj: it says using binomial theorem
Answered by amitnrw
17

(2+√3)⁷  +  (2-√3)⁷ = 10084

Step-by-step explanation:

(x + y)ⁿ  = ⁿC₀xⁿy⁰ + ⁿC₁xⁿ⁻¹y¹  +...........................+ ⁿCₙ₋₁x¹yⁿ⁻¹+ ⁿCₙx⁰yⁿ

(2+√3)⁷ = ⁷C₀2⁷(√3)⁰ + ⁷C₁2⁶(√3)¹ +  ⁷C₂2⁵(√3)² + ⁷C₃2⁴(√3)³  + ⁷C₄2³(√3)⁴ +  ⁷C₅2²(√3)⁵ + ⁷C₆2¹(√3)⁶ +  ⁷C₇2⁰(√3)⁷

(2-√3)⁷ = ⁷C₀2⁷(-√3)⁰ + ⁷C₁2⁶(-√3)¹ +  ⁷C₂2⁵(-√3)² + ⁷C₃2⁴(-√3)³  + ⁷C₄2³(-√3)⁴ +  ⁷C₅2²(-√3)⁵ + ⁷C₆2¹(-√3)⁶ +  ⁷C₇2⁰(-√3)⁷

=> (2-√3)⁷ = ⁷C₀2⁷(√3)⁰ - ⁷C₁2⁶(√3)¹ +  ⁷C₂2⁵(√3)² - ⁷C₃2⁴(√3)³  + ⁷C₄2³(√3)⁴ -  ⁷C₅2²(√3)⁵ + ⁷C₆2¹(√3)⁶ -  ⁷C₇2⁰(√3)⁷

Adding Both

(2+√3)⁷  +  (2-√3)⁷ = 2(⁷C₀2⁷(√3)⁰  +  ⁷C₂2⁵(√3)²  + ⁷C₄2³(√3)⁴ + ⁷C₆2¹(√3)⁶ )

=> (2+√3)⁷  +  (2-√3)⁷ = 2(128  +  21*32 * 3  + 35*8* 9 + 7*2*27 )

=> (2+√3)⁷  +  (2-√3)⁷ = 2(128  +  2016  + 2520 + 378 )

=> (2+√3)⁷  +  (2-√3)⁷ = 2(5042 )

=>  (2+√3)⁷  +  (2-√3)⁷ = 10084

Learn more:

Use binomial theorem to expand (2+X)5 in ascending powers of x ...

https://brainly.in/question/11212431

The first three terms in the binomial expansion of ( ) n x y + are 1, 56 ...

https://brainly.in/question/13197893

Similar questions