Math, asked by Anonymous, 1 year ago

Evaluate :- 2/3 cosec^2 58° - 2/3 cot 58 tan 32 - 5/3 tan 13° tan 37° tan 45° tan 53° tan 77°

if u know this answer then only answer it....please any one trigonometry topper answer this

Answers

Answered by chandresh126
298
Plz check it out.

Hope it's help.
Attachments:
Answered by presentmoment
108

-1 is the value of \bold{\frac{2}{3} \csc ^{2} 58^{\circ}-\frac{2}{3} \cot 58^{\circ} \tan 32^{\circ}-\frac{5}{3} \tan 13^{\circ} \tan 37^{\circ} \tan 45^{\circ} \tan 53^{\circ} \tan 77^{\circ}}

Given:

The given expression is

\frac{2}{3} \csc ^{2} 58^{\circ}-\frac{2}{3} \cot 58^{\circ} \tan 32^{\circ}-\frac{5}{3} \tan 13^{\circ} \tan 37^{\circ} \tan 45^{\circ} \tan 53^{\circ} \tan 77^{\circ}

To find:

The value of  \frac{2}{3} \csc ^{2} 58^{\circ}-\frac{2}{3} \cot 58^{\circ} \tan 32^{\circ}-\frac{5}{3} \tan 13^{\circ} \tan 37^{\circ} \tan 45^{\circ} \tan 53^{\circ} \tan 77^{\circ} = ?

Solution:

We know that the sum of complementary angles is 90^\circ.

So,13+77=90 ; 45+45 =90 ; 53+37=90

Let us consider tan13 tan37 tan45 tan53 tan77 from the given expression

\begin{array}{l}{=\tan 13 \tan 37 \tan 45 \tan 53 \tan 77} \\ {=\tan 13 \tan 37(1) \tan 53 \tan 77 \quad\left(\text { since tan45 }=\frac{\sin 45}{\cos 45}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}\right)} \\ {=1}\end{array}

Now, let us consider the given expression

\begin{array}{l}{\frac{2}{3} \csc ^{2} 58^{\circ}-\frac{2}{3} \cot 58^{\circ} \tan 32^{\circ}-\frac{5}{3} \tan 13^{\circ} \tan 47^{\circ} \tan 45^{\circ} \tan 53^{\circ} \tan 77^{\circ}} \\ {=\frac{2}{3} \csc ^{2} 58^{\circ}-\frac{2}{3} \cot 58^{\circ} \tan 32-\frac{5}{3} \times 1} \\ {=\frac{2}{3} \csc ^{2} 58-\frac{2}{3} \cot 58 \tan (90-58)-\frac{5}{3}}\end{array}

\begin{array}{l}{=\frac{2}{3} \csc ^{2} 58-\frac{2}{3} \cot 58 \cot 58-\frac{5}{3}} \\ {=\frac{2}{3}\left(\csc ^{2} 58-\cot ^{2} 58\right)-\frac{5}{3} |} \\ {=\frac{2}{3}(1)-\frac{5}{3} \quad\left(A s \csc ^{2} x-\cot ^{2} x=1\right)} \\ {=\frac{2}{3}-\frac{5}{3}} \\ {=-\frac{3}{3}}\end{array}

= -1

Therefore, \bold{\frac{2}{3} \csc ^{2} 58^{\circ}-\frac{2}{3} \cot 58^{\circ} \tan 32^{\circ}-\frac{5}{3} \tan 13^{\circ} \tan 37^{\circ} \tan 45^{\circ} \tan 53^{\circ} \tan 77^{\circ} = -1}

Similar questions