English, asked by sarveshpathak20sp, 7 months ago

Evaluate (2^-5 x 2^-6)^-4​

Answers

Answered by tarun2008K
3

Answer:

(2^-5 x 2^-6)^-4= 1.7592186e+13

Answered by pulakmath007
2

\displaystyle \sf{ {( {2}^{ - 5}  \times  {2}^{ - 6} )}^{ - 4}   } =  \sf \:  {2}^{44}

Given :

\displaystyle \sf{ {( {2}^{ - 5}  \times  {2}^{ - 6} )}^{ - 4}   }

To find :

To simplify the expression

Formula :

We are aware of the formula on indices that :

 \sf{1. \:  \:  {a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

 displaystyle \sf{2. \:  \:  \:  { ({a}^{m} )}^{n} =  {a}^{mn}  }

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf{ {( {2}^{ - 5}  \times  {2}^{ - 6} )}^{ - 4}   }

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{ {( {2}^{ - 5}  \times  {2}^{ - 6} )}^{ - 4}   }

\displaystyle \sf{  = { \bigg( {2}^{( - 5)  + ( - 6)}  \bigg)}^{ - 4}   }\:  \:  \: \bigg[ \:  \because \:{a}^{m}  \times  {a}^{n} =  {a}^{m + n} \bigg]

\displaystyle \sf{  = {( {2}^{ - 11}   )}^{ - 4}   }

\displaystyle \sf{  = {2}^{ \{( - 11) \times ( - 4) \}}      }\:  \:  \: \bigg[ \:  \because \:{ ({a}^{m} )}^{n} =  {a}^{mn}   \bigg]

\displaystyle \sf{ =  {2}^{44}   }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. find the value of x (2) 5) -³×(2/5) ^18=(2/5)^10x

https://brainly.in/question/47348923

2. If (-2)m+1 × (-2)4 = (-2)6 then value of m =

https://brainly.in/question/25449835

#SPJ3

Similar questions