Math, asked by scera3820, 1 year ago

Evaluate 2(cos 58\sin32) - root 3(cos 38 cos 52\tan15 tan60 tan 75)

Answers

Answered by chintalasujat
79

Answer:

Step-by-step explanation:

PLEASE MARK ME AS BRAINLIEST  

Step-by-step explanation:

2(cos58/sin32)-√3(cos38*cosec52/tan15*tan60*tan75)

= 2{cos58/sin(90-58)}-√3[{cos38*cosec(90-38)}/tan(90-75)*tan60*tan75]

= 2{cos58/cos58}-√3[cos38*sec38/cot75*tan60*tan75]                  (1/tanФ = cotФ)

= 2*1-√3[1/tan60]                                               

= 2-√3(1/√3)

= 2-1

= 1

Answered by JackelineCasarez
15

2(cos 58\sin32) - root 3(cos 38 cos 52\tan15 tan60 tan 75) = 1

Step-by-step explanation:

2(\frac{cos 58}{sin32}) - \sqrt{3}(\frac{cos 38 cos 52}{tan15 tan60 tan 75})

= 2(\frac{sin 90 - 58}{sin 32}) - \sqrt{3}(\frac{sin (90 - 38) cosec 52}{tan15 tan60 tan 75})             (∵ sin (90 - θ) = cosθ)

= 2(\frac{sin 32}{sin 32}) - \sqrt{3}(\frac{sin 52 cosec 52}{cot(90 - 15) tan60 tan 75}}              (∵ cot(90−θ) = tanθ)

= 2(\frac{sin 32}{sin 32}) - \sqrt{3}(\frac{sin 52 cosec 52}{cot 75 tan60 tan 75 })

= 2  - \sqrt{3}(1/tan 60)                    ( ∵sinθ cosec θ = 1 and cotθ tanθ = 1)

= 2 - \sqrt{3} (1/ \sqrt{3})                        (∵ tan60 = \sqrt{3})

= 2 - 1

= 1

Learn more: Evaluate

brainly.in/question/22485269

Trigonometry

brainly.in/question/19205390

Similar questions