Math, asked by lalithabhayal702, 1 year ago

evaluate 2 cos square 45 degree + sin square 30 degree minus cos square 60 degree​

Answers

Answered by harshsppalsappal
3

Step-by-step explanation:

(1/✓2)×(1/√2)+1/2×1/2-1/2×1/2

1/2 + 1/4 -1/4

2+1-1/4

2/4

=1/2

Answered by harendrachoubay
3

2\cos^2 45+\sin^2 30-\cos^2 60 =\dfrac{1}{2}

Step-by-step explanation:

We have,

2\cos^2 45+\sin^2 30-\cos^2 60

To find, 2\cos^2 45+\sin^2 30-\cos^2 60 = ?

2\cos^2 45+\sin^2 30-\cos^2 60

=2(\dfrac{1}{\sqrt{2}})^2+(\dfrac{1}{2})^2-(\dfrac{\sqrt{3}}{2})^2

Using the trigonometric identity,

\cos 45=\dfrac{1}{\sqrt{2}}, \sin 30=\dfrac{1}{2} and

\cos 60=\dfrac{\sqrt{3}}{2}

=2(\dfrac{1}{2})+\dfrac{1}{4}-\dfrac{3}{4}

=1+\dfrac{1}{4}-\dfrac{3}{4}

=\dfrac{4+1-3}{4}

=\dfrac{2}{4}

=\dfrac{1}{2}

2\cos^2 45+\sin^2 30-\cos^2 60 =\dfrac{1}{2}

Similar questions