Math, asked by m9onimargkithanar, 1 year ago

Evaluate 2cos 2 60+3sec 2 30-2 tan 2 45 / sin 2 30 +cos 2 45

Answers

Answered by khanujarashmit
54
Solution is attached below
Attachments:
Answered by harendrachoubay
13

\dfrac{2\cos^2 60+3\sec^2 30-2\tan^22 45}{\sin^2 30+\cos^2 45}=\dfrac{10}{6}

Step-by-step explanation:

We have,

\dfrac{2\cos^2 60+3\sec^2 30-2\tan^22 45}{\sin^2 30+\cos^2 45}

To find, \dfrac{2\cos^2 60+3\sec^2 30-2\tan^22 45}{\sin^2 30+\cos^2 45}=?

\dfrac{2\cos^2 60+3\sec^2 30-2\tan^22 45}{\sin^2 30+\cos^2 45}

=\dfrac{2(\dfrac{1}{2} )^2 +3(\dfrac{2}{\sqrt{3}} )^2 -2(1)^2 }{(\dfrac{1}{2})^2+(\dfrac{1}{\sqrt{2}})^2}

[ ∵ \cos 60=\dfrac{1}{2}, \sec 30=\dfrac{2}{\sqrt{3}},\tan 45=1]

=\dfrac{2\dfrac{1}{4}  +3\dfrac{4}{3}-2 }{\dfrac{1}{4}+\dfrac{1}{2}}

=\dfrac{\dfrac{1}{2}+4-2 }{\dfrac{1+2}{4}}

=\dfrac{\dfrac{1}{2}+2 }{\dfrac{3}{4}}

=\dfrac{\dfrac{5}{2}}{\dfrac{3}{4}}

=\dfrac{5}{2} \times \dfrac{4}{3} =\dfrac{10}{6}

Hence, \dfrac{2\cos^2 60+3\sec^2 30-2\tan^22 45}{\sin^2 30+\cos^2 45}=\dfrac{10}{6}

Similar questions