Evaluate 2sin68 / cos22 - 2tan(90-15)/5cot15- 3tan45 tan20 tan40 tan50 tan70 /5(sin square70+sin square20).
Answers
Answered by
10
sin68° = sin(90°—22°) = cos22°
sin68°÷cos22° = 1
tan(90°—15°) = cot15°
tan(90°—15°)÷cot15° = 1
tan20° = tan(90°—70°) = cot70° = 1÷tan70°
tan20° × tan70° = 1
tan40° = tan(90°—50°) = cot50° = 1÷tan50°
tan40° × tan50° = 1
sin²70° + sin²20° = sin²(90°—20°) + sin²20°
= cos²20° + sin²20°
= 1
2×(sin68°÷cos22°) — (2÷5){tan(90°—15°)÷cot15°} —(3 tan45° tan20° tan 40° tan50° tan70°) ÷ {5(sin²70°+sin²20°)}
=2×1 — (2÷5)×1 —(3tan45°×1×1)÷(5×1)
=2 — (2÷5) — (3÷5)
=2—1
=1
sin68°÷cos22° = 1
tan(90°—15°) = cot15°
tan(90°—15°)÷cot15° = 1
tan20° = tan(90°—70°) = cot70° = 1÷tan70°
tan20° × tan70° = 1
tan40° = tan(90°—50°) = cot50° = 1÷tan50°
tan40° × tan50° = 1
sin²70° + sin²20° = sin²(90°—20°) + sin²20°
= cos²20° + sin²20°
= 1
2×(sin68°÷cos22°) — (2÷5){tan(90°—15°)÷cot15°} —(3 tan45° tan20° tan 40° tan50° tan70°) ÷ {5(sin²70°+sin²20°)}
=2×1 — (2÷5)×1 —(3tan45°×1×1)÷(5×1)
=2 — (2÷5) — (3÷5)
=2—1
=1
Answered by
5
Answer:
LHS = 1
Step-by-step explanation:
ATQ, We have to find;
Using,
⇒ tan(90° - 15°) = cot15°
⇒ cos22° = cos(90° - 68°)
⇒ tan45° = 1
Using,
⇒ cos(90° - 68°) = sin68°
⇒ tan20° = tan(90° - 70°)
⇒ tan40° = tan(90° - 50°)
Using,
⇒ tan(90° - 70°) = cot70°
⇒ tan(90° - 50°) = cot50°
Using,
⇒ tan70° × cot70° = 1
⇒ tan50° × cot50° = 1
⇒ sin²20° = sin²(90° - 70°)
⇒ Using sin²(90° - 70°) = cos²70°
⇒ Using sin²70° + cos²70° = 1
Similar questions
History,
8 months ago
Math,
8 months ago
Social Sciences,
8 months ago
Hindi,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago
Biology,
1 year ago