Evaluate 3(cos43/sin47)2^-cos37*cosec53/tan5*tan25*tan45*tan65*tan85+sin^2 35/cos^255
Answers
Answered by
0
Answer:
3
Step-by-step explanation:
3(cos43/sin47)² - cos37*cosec53/tan5*tan25*tan45* tan65*tan 85 + sin² 35/cos²55
//remember sin A = cos (90-A) cosec A = sec(90-A)
Solving each part separately
(cos43/sin47) => Cos43)/Cos(90-47) = Cos43/Cos43 = 1
cos37*cosec53 = Cos37*Sec(90-53) = Cos37*Sec37 = Cos37*1/Cos37 = 1
//Remember tan A = cot (90-A) = 1/tan(90-A). Now in denominator part
tan5*tan25*tan45*tan65*tan85 = tan5*tan25*tan45*Cot(90-65)*Cot(90-85) = tan5*tan25*tan45*Cot25*Cot5 = tan5*tan25*tan45*1/tan25*1/tan5
= Tan45 = 1.
Sin²35/Cos²55 = (sin35/cos55)² = [Cos(90-35)/Cos55]² = (Cos55/Cos55)² = 1.
Substituting the values back.
3(1)² - 1/1 + (1)² = 3.
Similar questions